Soft x-ray microscopy

(Zone-plate based soft-x-ray spectro-microscopy)

Hyun-Joon Shin

Pohang Accelerator Lab. (PAL), Korea shj001@postech.ac.kr

Contents

1. Introduction:

Spectroscopy, need of spectro-microscopy, ... * zone plate as a soft x-ray lens & probing depth

2. Types of microscopy and application examples
2.1. Full-field Transmission x-ray microscopy (TXM)
2.2. Scanning transmission x-ray microscopy (STXM)
Ptychography mode
Fluorescence mode
2.3. Scanning photoelectron microscopy (SPEM)

3. Summary

1. Use of x-rays

PES: photoemission/ photoelectron spectroscopy XPS: X-ray photoemission/ photoelectron spectroscopy XRD: X-ray diffraction XRS: X-ray scattering SAXS: Small angle x-ray scattering WAXS: Wide angle x-ray scattering XAS: X-ray absorption XAFS: X-ray absorption fine structure XES: X-ray emission spectroscopy XRF: X-ray fluorescence

PAL

1. XPS & XAS for materials science...

1. Practical use of XPS & XAS spectroscopy...

element, crystal structure, chemical states, oxidation state, magnetic moment, electronic structure, ...

W. C. Chueh et al, Sandia Report, 2012.

I. -S. Byun et al., NPG Asia Materials (2014) 6, e102

H. J. Shin

J. Chung et al., Org. Electron. 9, 869 (2008)

1. Spectromicroscopy schematic

1. zone plate as a focusing lens (< 10 nm)

Focal length: depends on E. Order sorting aperture (OSA) is needed: short working distance (w).

$$f = \frac{4N(\delta r)^2}{\lambda}$$

S.R. = 1.22 × δr

Soft x-ray image of 15 nm Cr/Si lines & spaces W. Chao, Nature 435, 1210 (2005)

1. Probing depth/ escape depth

2. Soft X-ray (spectro)-Microscopes

2.1 TXM (transmission x-ray microscopy)

Nondestructive, element specific, ...

Spatial resolution: 20 ~ 50 nm.

Advantage in bio sample investigation: - no additive for contrast, - internal structure visualization, - 3D

- CT data acquisition time is shorter than other tools
- easy alignment and operationsample can be in atmospheric pressure ...

Electron microscope

200 ~ 1000 nm

Larabell & Le Gros, Mol. Biol. Cell, 15, 957 (2004)

2.1 TXM application examples:

Malaria infected blood cells

Life cycle of malaria in human red blood cells.

uninfected blood cell

a 12- hour old parasite

Leupeptin treated cell

Tubular structure protruding from the parasite into the red blood cell cytosol seen with a young parasite.

Image size = 7 μm x 7 μm

http://www-cxro.lbl.gov

Humic substances: how would they dissolve in the soil?

Effect of solution pH.

A) Globular and ring-like structures in acidic solution.

B) Uniform, small aggregates in alkaline solution

Effect of cation presence.

- C) Thread-like structures with divalent cations.
- D) Globular and thread-like structures with trivalent cations.

S. Myneni, Science 286, 1335 (1999).

2.1 TXM application examples: 2D-samples

Direct observation of stochastic domain-wall depinning in magnetic nanowires

(a) Typical SEM image of a 50 nm thick nanowire with a width of 150 nm together with enlarged notch patterns with notch depths of about 30% (b) and about 50% (c) of the wire width.

Three representative image sequences of magnetic domain-wall evolution along the hysteresis cycle for wire widths of w $\frac{1}{4}$ 150 nm (d), 250 nm (e), and 450 nm (f). The magnetic field of the DW evolution pattern is indicated on the lower right.

H. J. Shin

2.1 TXM application examples: 3D

Rapidly frozen fission yeast

Soft X-ray tomography of a rapidly frozen fission yeast, *Schizosaccharomyces pombe*. The data for the complete threedimensional reconstruction were composed of 90 images, collected through a total of 180° of rotation. Two computer-generated sections through the tomographic reconstruction are shown along with an image showing select organelles that have been segmented and color-coded according to type. Key: nucleus, blue; nucleolus, orange; mitochondria, gray; vacuoles, white; lipid-rich vesicles, green. (X-ray tomographic reconstructions are an update of the work outlined in [27,28**].)

Rapidly frozen Saccharomyces cerevisiae cells

Soft x-ray tomography of rapidly fronzen Saccharomyces cerevisiae cells imaged at each phase of cell cycle – G1, S, M, and G2. Organelles are color-coded as follows: blue, nucleus; orange, nucleolus; gray, mitochondria; ivory, vacuoles; green, lipid bodies. Scale bar, 2um.

2.2 STXM (scanning transmission x-ray microscopy)

2.2 STXM requirement: beamline specification

Н. э. энш

2.2 STXM requirement; apparatus

- Accurate and fast scanning stages
- Accurate and fast position monitoring
- Accurate and fast feedback system (Laser interferometry)
- Fast detector

http://www-als.lbl.gov & Bruker Ltd.

 $f = D \Delta r / \lambda$

** **OSA**

2.2 STXM in real shape

- easier to find the best focus
- easier and faster sample loading
- detector is efficient for fast counting...

2.2 STXM: single image acquisition

20

H. J. Shin

2.2 STXM stack images: acquisition of point intensity/ line intensity profile/ 2-D image at different photon energy for taking spectral information...

2.2 STXM: images at different photon energies & spectra at any point or region of interest.

300 nm silica images at different photon energies & O K-edge spectra from edge & center of silica nano particle

2.2 STXM application examples

Courtesy of Prof. D. H. Kim (Chungbuk Univ.)

2.2 STXM application examples : Quasi in-situ study of phase transformation in Lithium-ion batteries

W. C. Chueh et al., Sandia Report, 2012.

H. J. Shin

2.2 STXM application examples: Operando investigation of lithiation and delithiation process of LixFePO4...

J. Lim et al., Science, 353, 566 (2016)

Rate dependent (de) lithiation heterogeneity (0.6 C, 2C) Current density (insertion rate) quantification Exchange current density vs. Li composition Origin of heterogeneity.

2.2 STXM; ptychography mode to improve space resolution...

D. Shapiro, T. Tyliszczak et al., Nat. Photonics (2014). Nat. Mater. (2014). Nano Lett. (2015).

~ 2-5 nm space resolution is possible ...

Increase of N.A. :

2.2 STXM; ptychography setup in practical example

Sample: FeO_x nanoparticles Photon energy: 710 eV 1 um x 1 um (20 x 20 points) Beam size at sample = ~70 nm Sample to CCD distance = ~80 mm

2.2 STXM; fluorescence mode

- Fluorescence yield is low for soft X-rays..
- Multi element information in a single scan !
- Low Z elements !
- > Can probe thick sample ...

2.2 STXM; fluorescence mode in practical application

A. Gianoncelli, B. Kaulich, M. Kiskinova, R. Alberti, T. Klatka, A. Longoni, A. de Marco, A. Marcello, Simultaneous Soft X-ray Transmission and Emission Microscopy, Nucl. Instr. and Meth. A 608 (1), 195-198

2.2 STXM; fluorescence mode application example

Al in tea leaves

Functionality and toxicity of AI in tea leaves analyzed on sub-cellular level

R. Tolra, K. Vogel-Mikus, R. Hajiboland, P. Kump. P. Pongrac, B. Kaulich, A. Gianoncelli, V. Babin, J. Barcelo, M. Regvar, C. Poschenrieder, *Localization of aluminium in tea (Camellia sinensis) leaves using low-energy X-ray fluorescence spectro-microscopy*, J Plant Research 124, 165-172.

H. J. Shin

2.3 SPEM (Scanning photoelectron microscopy)

X-ray photoelectron spectroscopy (XPS)

- is a useful probe to investigate chemical states, electronic structure, ...
- is very sensitive to surface.

2.3 SPEM in real world...

electron energy analyzer sample scanning stage

Space resolution: 200 nm ~ 1 um (nano-ARPES: 50 - 100 nm) X-ray photon energy: 100 – 1100 eV Surface sensitive (< 2 nm) UHV environment, in-situ experiments

8A1 beamline, PLS

x rays

x-ray

lens (ZP)

÷

OSA

2.3 SPEM application: diluted magnetic semiconductor (DMS)

Injection of spin-oriented electrons into semiconductor

Observation of Mn rich phase in Ge_{0.94}**Mn**_{0.06}**DMS**

DMS: Ge(0.94)Mn(0.06)

Observation of chemical phase separation into Mn rich and Mn depleted phases.

Similar phase separation of Cr and Fe -rich and -depleted phases were observed in the Ge(0.99)Cr(0.01) and Ge(1-x)Fe(x) DMS materials.

J. S. Kang, et al., Phys. Rev. Lett. 94, 147202 (2005)

Mn 3d are located well below the E_{F} , and occupy the deep levels.

Confirms the Mn²⁺ valence state. Hybridization with Ge 2p is weaker.

The Mn-rich microstructure may explain the ferromagnetism in the Ge(0.94)Mn(0.06) DMS.

2.3 SPEM application: control of graphene functionalization...

Binding energy (eV)

2.3 SPEM application: selective catalytic burning of graphene by SiOx layer depletion...

2.3 SPEM application: graphene layers (Nano-ARPES)

Limitations of traditional ARPES and the necessity of NanoARPES to study the intrinsic electronic structure of CVD graphene/Cu. (a) and (d) Scale difference of beam size and crystalline size in ARPES measurement. (b) and (e) Optical images of polycrystalline CVD graphene/Cu at different scales. (c) ARPES Fermi surface of polycrystalline CVD graphene/Cu as shown in (b) with a beam spot much bigger than the graphene domain size. The white dashed circle indicates the polycrystalline graphene FS. (f) NanoARPES FS from one single CVD graphene grain on Cu foil as shown in (e). Red hexagons indicate the Brillouin zone of graphene.

C. Chen, et all, J. Phys.: Cond. Matt. (2017)

2.3 SPEM application: Atomic/molecular layer patterning

S. W. Moon et al., Adv. Mat. 19, 1321 (2007)

2.3 SPEM application: Atomic/molecular layer patterning

3. Discussion: Evolution of space resolution of x-ray nanoscopy ...

H. J. Shin

3. Discussion: application fields ...

- > Nano particles: catalytic reaction, ...
- > Nano bio materials: nano ptl's influence on cell, ...
- Bio, medical application
- Environmental materials
- > Polymers
- > Thin film devices (in-situ degradation)
- Secondary ion battery materials
- > Magnetic materials
- Geo- and extraterrestrial- materials

۶ ...

- in-situ experiments (annealing, biasing, magnetic field application, time resolved experiment, ...) are feasible
- samples in solution environment
- soft materials (less radiation damage due to higher efficiency in contrast)
- polarization sensitive materials
- from high vacuum to atmospheric pressure environment

≻ ...

3. Discussion: soft x-ray microscopes... (last changed: 31-Jan-2012)

Originally published in Handbook of Nanoscopy, Vol 2 (2012)

Courtesy of Prof. A. Hitchcock

Гуре	Facility	name	City	Country	Source	E-range (eV)	Status
TXM	Alba	Mistral	Barcelona	Spain	BM	270-2600	construction
TXM	ALS	XM1	Berkeley	USA	BM	250-900	operating
TXM	ALS	XM2 (NCXT)	Berkeley	USA	BM	250-6000	operating
TXM	Astrid	XRM	Aarhus	Denmark	BM	500	operating
TXM	Bessy	U41-TXM	Berlin	Germany	Und-L	250 - 600	operating
TXM	Diamond	B24 cryo-TXM	Harwell	UK	BM	250-2500	construction
TXM	NSRL	TXM	Hefei	China	BM	500	operating
TXM	Ritsumeikan	BL12	Kyoto	Japan	BM	500	operating
STXM	ALS	5.3.2.2	Berkeley	USA	BM	250-750	operating
STXM	ALS	5.3.2.1	Berkeley	USA	BM	250-2500	commissioning
STXM	ALS	11.0.2	Berkeley	USA	EPU	100-2000	operating
STXM	Bessy	old-STXM	Berlin	Germany	BM	250-600	decommissioned
STXM	Bessy	MAXYMUS	Berlin	Germany	EPU	250 - 1500	operating
STXM	CLS	10ID1	Saskatoon	Canada	EPU	130-2500	operating
STXM	Diamond	I08	Harwell	UK	EPU	250-2500	construction
(S)TXM	Elettra	Twin-mic	Trieste	Italy	Und-L	250 - 2000	operating
STXM	UVSOR	BL4U	Okazaki	Japan	Und-L	50-800	construction
STXM	NSLS	X1A (2)	Upton	USA	Und-L	250-1000	decommissioned
STXM	PLS	nanoscopy	Pohang	Korea	EPU	100 - 2000	construction
STXM	SLS	PolLux	Villigen	Switzerland	BM	250-750	operating
STXM	SLS	NanoXAS	Villigen	Switzerland	BM	250-750	commissioning
STXM	Soleil	Hermes	Saint-Aubin	France	EPU	250 - 1500	construction
STXM	SSRF	SXS	Shanghai	China	EPU	200 - 2000	operating
STXM	SSRL	13-1	Stanford	USA	EPU	250 - 1000	operating
SPEM	ALS	BL 7.0	Berkeley	USA	Und-L	90-1300	decommissioned
SPEM	ALS	Maestro	Berkeley	USA	EPU	90-1300	commissioning
SPEM	Elettra	BL 2.2 L	Trieste	Italy	Und-L	200-1400	operating
SPEM	Elettra	BL 3.2 L	Trieste	Italy	Und-L	27, 95	construction
SPEM	MAX-lab	BL 31	Lund	Sweden	Und-L	15-150	operating
SPEM	NSRRC	BL09A1	Hinschu	Taiwan	Und	60-1500	operating
SPEM	PAL	8A1	Pohang	Korea	Und	20 - 2000	operating
SPEM	Soleil	Antares	Saint-Aubin	France	EPU	50 - 1500	commissioning

