Synchrotron X-ray Powder Diffraction

Chris Ling The University of Sydney

Outline

Diffraction – recap

X-ray crystallography

Single crystal diffraction

Powder diffraction

Conventional X-ray diffraction

Sources and limitations

Synchrotron X-ray diffraction

Advantages and bonus features

Diffraction

In three slides

Wave diffraction

Crystals, lattice planes and X-rays

Bragg's law and crystallography

Note that the sets of lattice planes that are closer together have smaller d-spacings and therefore higher 2 θ angles.

These planes produce less coherent diffraction, because the *size* of the atoms (hence the uncertainty in their positions) becomes more significant relative to the interlayer spacing *d*. Therefore, reflections get weaker as 2θ angle increases.

X-ray crystallography

Modern laboratory instruments and techniques for crystal structure determination

Single crystal diffraction

3-D reciprocal lattice

Single crystal diffraction

Structure solution and refinement

Diffraction as a Fourier transform:

$$\rho(x,y,z) = \frac{1}{V_c} \sum_{hkl=-\infty}^{\infty} \sum_{kl=-\infty}^{\infty} F(h,k,l) e^{-i2\pi\{hx+ky+lz\}} = \frac{2}{V_c} \sum_{h=0,kl=-\infty}^{\infty} \sum_{kl=-\infty}^{\infty} |F(h,k,l)| \cos(2\pi\{hx+ky+lz\}-\alpha_{hkl})$$

The phase problem:

Structure solution and refinement

After applying various number-crunching statistical methods we expect to be able to solve and refine:

Unit cell and space group symmetry

Atomic positions

Anisotropic atomic displacements

 $H_{10}AgF_6N_6P$

Powder diffraction

Powder diffraction

Structure solution and refinement

With full-pattern "Rietveld" methods we expect to refine:

Unit cell and space group symmetry

Atomic positions

Isotropic atomic displacement parameters

Phase identification

Tracking the progress of reactions

Phase transitions in situ

E.g. symmetry-lowering in ferroelectric BaTiO₃

Conventional X-ray diffraction

Cheap, convenient and user-friendly

Laboratory X-ray sources

Laboratory XRD instruments generate X-rays by hitting a pure element with a beam of electrons accelerated through ~30 keV.

Standard sources use sealed tubes

~3× higher fluxes can be achieved using rotating anodes

Practical limitations of lab sources

Limited intensity means that:

Requires sample sizes that are not always achievable synthetically (especially single crystals)

Trade-off between divergence and intensity \rightarrow limited resolution

Limited minimum wavelength means that:

The accessible Q range is restricted \rightarrow a limited number of reflections can be collected

Samples are more absorbing \rightarrow maximum sample size is limited

Together this means:

The effective maximum dynamic range (weak vs. strong reflections) is limited

Synchrotron X-ray diffraction

Expensive, inconvenient and frustrating Intense, energetic and tuneable

Advantages of synchrotron X-rays

High intensity

Small samples (powder or single crystal)

High speed (fast *in situ* processes, unstable compounds...)

High signal-to-noise \rightarrow better data

- \rightarrow weak features (impurities, satellite reflections, diffuse scattering)
- High resolution \rightarrow complex structures with big unit cells
 - \rightarrow fine peak splitting (phase transitions, decomposition)
 - \rightarrow peak shapes defined by sample properties (strain, particle size)

Tuneable energy

Highlight elements of interest

Minimise absorption

High energy

High Q \rightarrow more accurate ADPs, potential for PDF analysisCompressed patterns \rightarrow can use restrictive sample environments (pressure, fields)High penetration \rightarrow minimise surface effects

Diffraction beamline design

The "white" beam must be monochromated for diffraction

Single-crystal monochromators, typically Si(111), select a single x-ray energy

"Bent" monochromators, mirrors and slits can be used to focus the beam

Typical flux at sample: $\sim 10^{12} - 10^{13}$ photons mm⁻² s⁻¹

 $cf \sim 10^{10} - 10^{11}$ photons mm⁻² s⁻¹ (after focussing) from a modern sealed tube (rotating anode) source

High-resolution detection

Analyser crystals

Signal-to-noise can be improved further by using a second monochromator crystal to direct only x-rays of the correct energy to the detector.

Smaller samples

- Air-sensitive, hygroscopic etc.
- Expensive reagents
- Difficult to synthesise

 $40 \mu m \ crystal \ of \\ 2C_4H_{12}N^+ - [Co_3(C_8H_4O_4)_4]^{2-}.3C_5H_{11}NO$

Complex structures

Rietveld-refinement of a 67-residue protein domain crystal structure with a cell volume of 64 879 $Å^3$

High-speed diffraction

Variable wavelengths permit ultra-fast "white-beam" Laue diffraction

Lower beam divergence \rightarrow higher resolution

Large, low-symmetry unit cells

Sample-dependent peak shape functions, e.g., lattice strain

Subtle symmetry lowering

Higher x-ray energy \rightarrow higher penetration

3D mapping of crystal orientation and/or strain (peak width) in different gauge volumes

Al-0.1%Mn alloy before (top) and after annealing

Scripta Mater. 59, 491 (2008)

Greater accessible dynamic range

Diffuse scattering: structural disorder

Modulated structures

 b^* calc calc b^* calc b^* b^* calc b^* calc b^* b^*

Paracetamol

Acta Crystallographica Section B: Structural Science 68, 1 (2012) 80-88

Greater accessible $\sin\theta/\lambda$ range

More information about atomic occupancies

Anharmonic atomic displacement parameters

Greater accessible $\sin\theta/\lambda$ range

Site occupancies in disordered structures Electron density, maximum entropy (MEM) Anharmonic atomic displacement parameters Pair distribution function (PDF) analysis

1-minute S-XRD scans at $\lambda = 0.124$ Å of cubic ZrO₂ being reduced to an amorphous phase

۷(Å³)

In situ reactions

High spatial resolution, high data collection speed and high sample penetration allow the study of industrial reactions under "real-world" conditions in real time.

Lattice expansion of a zeolite catalyst in a methanol-to-olefin reactor, due to coking, mapped in time and space

Summary: synchrotron killer apps

Small samples

Heavy elements

Big, complex and/or low-symmetry structures

High-resolution ADPs

Modulated structures

Short-range order (PDF)

Medium-range order (diffuse scattering)

Torturing insects

