

MONASH University

Detectors: Things you should know

Rob Lewis

Scott Automation and Robotics Medical Imaging and Radiation Sciences, Monash University Medical Imaging, University of Saskatchewan

MONASH University

🔄 UNIVERSITY OF SASKATCHEWAN

Integrating Detectors

Mode

Measures deposited energy at end of integration period

Characteristics

- High input flux capability
- Read noise dominates at low signal ("fog level")
- Dead time between frames
- 2×20 keV phts = 1×40 keV photon i.e. Cannot perform simultaneous spectroscopy and positioning
- Examples: Image plates, CCDs

Counting Detectors

Mode

 Detects every particle as it arrives. Only active pixels read

Characteristics

- Quantum limited, Detector noise often negligible
- No dead time between frames
- Can measure position and energy simultaneously
- Limited input flux capability
- Examples: Geiger counters, Pilatus, Scintillators

Input flux

GMAX3005

150 Megapixels Full-Frame CMOS Image Sensor - GMAX3005

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5µm×5.5µm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5µm×5.5µm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

SSREDIXELMO.// GNAX30

Resolution is NOT pixel size

UNIVERSITY OF SASKATCHEWAN

Resolution is NOT pixel size

Sampling

Shannon's Theorem and Nyquist Criterion

• The highest frequency that can be 'measured' is HALF the sampling frequency

Aliasing

- If the input is not band limited to frequencies less than $f_s/2$, then aliasing will occurs at frequencies $f \pm nf_s$
 - where f = signal frequency, fs = sampling frequency, n = integer
- If you have 100µm pixels, the very best spatial resolution that you can expect (in the absence of noise) is 200µm
- In any real system > 200μm
- And that is all assuming NO DISTORTIONS!!

Aliasing

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5µm×5.5µm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

Electronic Rolling Shutter

University of Saskatchewan

https://en.wikipedia.org/wiki/Rolling_shutter

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5μm×5.5μm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Frame rate Data rate	10fps @ full frame 24Gbit/s @10fps	Full well charge Output interface	23000 e- 120 LVDS pairs
Frame rate Data rate Supply voltage	10fps @ full frame 24Gbit/s @10fps 3.3V / 1.8V	Full well charge Output interface Operating temperature	23000 e- 120 LVDS pairs -55° C ~ +85° C

Data Rates

120 LVDS pairs at 200Mbps = 24Gbps
 LVDS = Low Voltage Differential Signalling

Interfaces

USB2: 480 Mbps
USB3: 5 Gbps
USB3.1: up to 10 Gbps???
SATA III: 6 Gbps
Thunderbolt 2: 10 Gbps

Disk write speeds

- ♦ HDD: 200 Mbps
 ♦ GGD
- ♦ SSD: 530 Mbps

So 45 SSDs in parallel required to store data!!!!

GMAX3005

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5µm×5.5µm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

Dark Current

- Dark current is the signal produced under zero illumination
- Dark noise is a measure of the fluctuations in dark current

Dark noise sets the minimum detectable signal

Dark Current

Pixels above the 0.2 photons pix⁻¹ specification

Number failing 2 measurements 5-2000s

Mean	44764	0.47%
Min	40822	0.43%
Max	48706	0.52%
nb. 14300 pi	xels not common to	both

🚭 UNIVERSITY OF SASKATCHEWAN 🛛 😹 MONA

dpiX Flashscan 30 PaxScan 4030

UNIVERSITY OF SASKATCHEWAN

Flashscan 30 - Performance

Mar Image Plate

Flashscan-30

t_{int}=30s

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5μm×5.5μm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate		Constitution (DCA-E Cu)	$2 \sum D M / m 1 / m n^2$
Iviain clock rate	20IVIHZ ~30IVIHZ	Sensitivity (PGA=5.6X)	255DIN/NJ/CM
Frame rate	10fps @ full frame	Full well charge	23000 e-
Frame rate Data rate	2000H2 * 3000H2 10fps @ full frame 24Gbit/s @10fps	Full well charge Output interface	23000 e- 120 LVDS pairs
Frame rate Data rate Supply voltage	2000H2 * 3000H2 10fps @ full frame 24Gbit/s @10fps 3.3V / 1.8V	Full well charge Output interface Operating temperature	23000 e- 120 LVDS pairs -55° C ~ +85° C

Quantisation Error

-1.0

0 5 10 15

20 25 30 35 40 45 50

SASKATCHEWAN

Sample number

MONASH University

http://www.dspguide.com/ch3/1.htm

ADC Resolution and Noise

Max noise is $\pm \frac{1}{2}$ LSB

• Standard deviation $\sigma = (1/\sqrt{12})LSB$ (Uniform pdf)

nBits	8	10	12	16
nLevels	256	1024	4096	65536
Quantisation error (%)	0.113	0.028	0.007	0.0015
Dynamic Range (dB)	48	60	72	96

- More bits usually means slower and more expensive
- Dynamic range is max signal divided by min signal
- Number of bits sets max dynamic range
- Often expressed in dB where $dB = 20 \log_{10}$ (Ratio)

GMAX3005

SENSOR SPECIFICATIONS

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5µm×5.5µm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

All these are interrelated

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5μm×5.5μm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

IPlate Single Peak PSF

UNIVERSITY OF SASKATCHEWAN

GMAX3005

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5μm×5.5μm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

Dynamic Range
dB = 20 log₁₀ (Ratio)
So the ratio = 10^{dB/20}

Quoted intra scene DR = 67.0dB = 2339
Quoted inter scene DR = 75.4dB = 5888

Why the difference?

Intensity Test

🚭 UNIVERSITY OF SASKATCHEWAN 🛛 🤱

Graded Absorber Comparison

Mar Image Plate

ESRF-Thompson IIT / CCD

Daresbury MWPC

S UNIVERSITY OF SASKATCHEWAN

SASKATCHEWAN

GMAX3005

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5µm×5.5µm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

Well Depth Quoted well depth is 23000e⁻ At 3eV / e⁻ hole pair a pixel will saturate with 8 x-ray photons of 10keV Suddenly dynamic range is 8! Indirect detection is crucial to increase dynamic range Use a phosphor

Radiation Damage

Indirect detection is important for another reason.....

Medipix

- Radiation damage at 40Gy =1.3×10¹⁰pht/mm² in the readout chip
- ♦ Strong diffraction spots ~ 10⁶ phts/mm²/s
 - Chip destroyed in ~ 8hours
- Direct beam (10¹⁰–10¹³ photons/mm²/s)
 - Chip destroyed in less than a second

GMAX3005

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5µm×5.5µm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Main clock rate Frame rate	20MHz ~30MHz 10fps @ full frame	Sensitivity (PGA=5.6x) Full well charge	255DN/nJ/cm ² 23000 e-
Main clock rate Frame rate Data rate	20MHz ~30MHz 10fps @ full frame 24Gbit/s @10fps	Sensitivity (PGA=5.6x) Full well charge Output interface	255DN/nJ/cm ² 23000 e- 120 LVDS pairs
Main clock rate Frame rate Data rate Supply voltage	20MHz ~30MHz 10fps @ full frame 24Gbit/s @10fps 3.3V / 1.8V	Sensitivity (PGA=5.6x) Full well charge Output interface Operating temperature	255DN/nJ/cm ² 23000 e- 120 LVDS pairs -55° C ~ +85° C

Sensitivity for Optical Photons **550nm photon** $E = \frac{hc}{\lambda} = 3.6 \times 10^{-10} \, \text{nJ}$ So 1 nJ equates to 3×10^9 photons $1 \text{ cm}^2 = 3305785 \text{ pixels}$ So 1 nJ/cm² = 908 phts / pixel Quoted Sensitivity is 255 DN/nJ/cm² ■ 1 Digital Number = 0.3 optical phts / pixel

But what does this mean for x-rays ?

Sensitivity

- Ideal sensitivity is 1 DN per x-ray photon detected
- Many factors beside chip sensitivity
 - Conversion x-rays to light (1 photon/30eV typical)
 - Ability for light to escape phosphor
 - Transfer light from phosphor to chip, lens, FOT
 - Lenses poor f1.4 = 10% transmission (no reflections)
 - Fibre optic better but distortions

GMAX3005

Photon-sensitive area	165mm(H) x 27.5mm(V)	SNR Max	43dB
Pixel size	5.5µm×5.5µm	Dark noise	3.94e-
Resolution	150MP - 30,000×5,000	Dark current	<10e-/s/pix (32° C)
Shutter type	electronic rolling shutter	Dynamic range	67dB (Intra-scene)
ADC	16bit	Dynamic range	75.4dB
Main clock rate	20MHz ~30MHz	Sensitivity (PGA=5.6x)	255DN/nJ/cm ²
Frame rate	10fps @ full frame	Full well charge	23000 e-
Data rate	24Gbit/s @10fps	Output interface	120 LVDS pairs
Supply voltage	3.3V / 1.8V	Operating temperature	-55° C ~ +85° C
Max Power	2.5W	Package	395 pins PGA

Dynamic Range and SNR

- Datasheet DNR = 75.4dB or 5888
- Datasheet SNR = 43.0dB or 141 !!!!
- Why the difference?
- DNR = Max signal / Detector Noise = $23000e^{-3.2e^{-}} = 7186 = 77.1dB$
- SNR = Max signal / All noise (inc. photon statistics) = $23000/\sqrt{23000} = 151.6 = 43.6$ dB
 - Nb/ Poisson statistics apply to electrons as well as photons

Difference between my calculation and their values is that they used a full well capacity of 20000

Real SNR

pixels because each pixel has its own noise

Things not in Specifications Spatial distortions Sensitivity uniformity

Solution of Saskatchewan

Spatial distortion x = f(y)

ESRF Image intensifier detector

🐺 UNIVERSITY OF SASKATCHEWAN 🛛 🐰 MON

Response to Uniform Illumination

ESRF TV Detector Thompson IIT & CCD

We would like sensitivity to be a constant, neither varying in time or position

UNIVERSITY OF SASKATCHEWAN

MONASH University

Combine Imaging and Spectroscopy

Pixel Array Detector

- A. Top electrode
- B. Pixellated semiconductor
- **C.** Collection electrodes

Ε

F

D. Bump bonds

С

- **E.** Input electrode
- F. Pixellated ASIC

В

Α

The Problem of Multiple Scatters

- We would like to know E₀
 but....
- $\bullet E_0 = E_1 + E_2 + E_{esc}$
- We don't know E_{esc}
- E_1 and E_2 are separate events
- So we must be able to associate multiple energy deposits as single input photon
- We must also minimise E_{esc}
- Not a simple problem!

Spectroscopic Imaging Reality

MONASH University

Detector Considerations

- Intensity Measurement
 - Uniformity across device
 - Ageing, radiation damage
 - Dynamic Range
 - Linearity of Response
 - ♦ Stability
- Spatial Measurement
 - Spatial Resolution
 - Spatial Distortion
 - ♦ Parallax

- Energy Measurement
 - Spectral Resolution
 - Linearity of Response
 - Uniformity of Response
 - Stability
- Time Measurement
 - Frame Rate
 - Photon Time Resolution
- Others
 - Size and weight
 - Cost

Other Issues

In addition to detector performance metrics such as

• Spatial resolution, Spectral resolution, etc.

- Often we need to corollate with other parameters
- Requires that...
 - The detector respond to triggers

Be able to synchronise with other systems measuring multiple parameters

Counting Statistics

Photons are quantised and hence subject to probabilities
 The Poisson distribution expresses the probability of a number of events, k occurring relative to an expected number, n

$$P(n,k) = \frac{n^{k}e^{-k}}{k!}$$

- The mean of P(n, k) is n
- The variance of P(n, k) is n
- The standard deviation or error (noise) is \sqrt{n}
- If signal = n, then $SNR = n/\sqrt{n} = \sqrt{n}$
- As n increases, SNR improves

Performance Measure - DQE

Perfect detector $SNR_{inc} = \sqrt{N_{inc}} \quad \therefore N_{inc} = SNR^2_{inc}$ Imperfect detector $SNR_{Non-ideal} < \sqrt{N_{inc}}$

We can define $N_{photons}$ that describes real SNR $NEQ = SNR^2_{Non-ideal}$

Ratio of NEQ to N_{inc} is a measure of efficiency $DQE = \frac{NEQ}{N_{inc}} = \frac{SNR^2_{Non-ideal}}{SNR^2_{inc}}$ Note that DQE is f(spatial and spectral frequencies)

DQE Comparison

DN-5 beam 2.6µGy

