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CREATING RADIATION 



Electrons interacting with atoms to make x-rays 

• Traditionally x-rays are created using 
energetic electrons interacting with 
atomic electrons 

     
  

X-ray production by energy conversion. J. 
Anthony Seibert J. Nucl. Med. Technol. 
2004;32:139-147 



X-ray tube spectrum 

• Not tunable, x-ray lines characteristic 
of the material 

• Broad angular and spectral 
distribution 

• Low Coherence 

https://miac.unibas.ch/PMI/01-BasicsOfXray.html 



Relativistic Lorentz Boost 



Dipole Magnet Synchrotron Radiation 



Radiation from Relativistic electrons 

• Store relativistic electrons in a 
magnetic trap called a storage ring 

• Achieve high currents (~500 mA) and 
fast repetition rates (~500 MHz) 

• Tunable in energy and time 

CERN Courier 
Nov 30, 2010 
Making X-rays: bright times ahead for FELs 



GENERATIONS OF LIGHT SOURCES 



Current lab X-ray Laboratory Sources 
X-ray tubes: 
• Broadband with few characteristic lines 
• Reasonable photon flux but limited brilliance 

Liquid Ga source: 
• 9.2 keV line (Ga Kα) 
• Very good brilliance 
• Unfortunately no 

wavelength tunability 

Exciting development: 



First Generation Storage Rings 

• Rings build for colliding beams 
• Photon beamlines operated 

parasitically 
• Machines built and run primarily for 

High Energy Physics 

Stanford Synchrotron Radiation Project pilot project beamline inside SPEAR, 07/06/1973. (SLAC Archives)  



Second Generation Storage Rings 

• Dedicated machines 
• Large emittance 
• Bending magnet radiation 
• Low energy x-rays 



Third Generation Storage Rings 

• Dedicated user facilities for photon 
sources  

• Addition of straight sections for 
Insertion Devices (IDs) 

• Pictured are two pioneers:  
– Herman Winick pioneer of the use of 

IDs and  
– Toshiyuki Mitsuhashi pioneer of the 

measurement of Synchrotron 
Radiation properties 



Fourth Generation Storage Rings 

• Ultra low emittance 
• Improved design and technology 
• High quality insertion devices 

MAX IV, Lund University, Sweden 



Rapid Development in Brightness 

• Constantly improving design and 
technology 

• High quality magnets 
• Feedback systems to stabilise high 

current electron beams 



Storage Ring World Map  

 Fig. 4. Synchrotron radiation sources around the world. 
M.E. Couprie 
 New generation of light sources: Present and future ☆ 
Journal of Electron Spectroscopy and Related Phenomena, Volume 196, 2014, 3–13 
http://dx.doi.org/10.1016/j.elspec.2013.12.007 



Enabling Technology 

• Compact magnets with high gradients 
• Vacuum technology for small pipes 



Evolution of Storage Rings 

Liu Lin, IPAC’17 



New Storage Rings and Upgrade Plans 

Machine Energy [GeV] Circum. [m] Emit. [pm] NB Status 

MAX-IV 3 528 140 330 operation, new 
Sirius 3 518 100 250 construction, new 
ESRF-U 6 844 224 135 construction, upgrade 
ALS-U 2 196 108 109 planned, upgrade 
APS-U 6 1104 280 42 planned, upgrade 
CLS-II 3 510 147 186 planned, new 
Diamond-II 3 561 144 140 planned, upgrade 
Elettra-II 2 259 72 250 planned, upgrade 
HEPS 6 1296 336 59 planned, new 
ILSF 3 528 100 275 planned, new 
PEP-X 4.5 2199 12   planned, upgrade 
PETRA-IV 6 2304 504 12 planned, upgrade 
SLS-II 2.4 290 84 103 planned, upgrade 
Soleil-II 2.75 354 104 230 planned, upgrade 

       



ALTERNATIVES TO STORAGE RINGS 



Free Electrons Lasers 

• Bunches of electrons from a linac 
pass into an undulator 

• Over time microbunches form 
enhancing the coherence 

• Radiation emission coherent, N2 with 
the number of electrons (c.f. N for a 
storage ring) 

• 1033 instantaneous brightness on 
femtosecond time scale 

X-ray free-electron lasers 
Brian W. J. McNeil 
Neil R. Thompson  
Nature Photonics  4, 814–821 (2010)  doi:10.1038/nphoton.2010.239 



Radiation Time Structure 

• Storage Ring time structure ~10 ps 
every ~1 ns 

• FEL time structure ~10 fs every ~1 ms 
• Fast time structure allows pump-

probe experiments: 
– Excite sample with one photon 

source 
– Measure relaxation of sample with 

varying time delay 



FEL World Map 

 Fig. 6. Map of FELs: in project in italic, in red for VUV soft X ray, in blue for hard X-ray. (For interpretation of the references to color in this text, the reader is referred 
to the web version of the article.) 

M.E. Couprie 
 New generation of light sources: Present and future ☆ 
Journal of Electron Spectroscopy and Related Phenomena, Volume 196, 2014, 3–13 

http://dx.doi.org/10.1016/j.elspec.2013.12.007 



Limitations of XFELs 

• Very large and expensive 
• Only 1-2 beamlines can operate at a 

time 



Inverse Compton Scattering (ICS):head on collision 
nm 5000 =λ

Electron energy Lorentz factor γ X-ray Wavelength X-ray energy Emission angle 0.1 γ-1 

5 MeV 11 10.8 Å 1.2 keV 9 mrad 

15 MeV 30 1.4 Å 9.1 keV 3 mrad 

25 MeV 50 0.50 Å 24.7 keV 2 mrad 

50 MeV 99 0.13 Å 96.7 keV 1 mrad 

• X-rays emitted in narrow cone, half angle γ-1 

• X-ray energy dependent on emission angle 
• 1% energy spread if θ < 0.1 γ-1 



Inverse Compton Scattering 
(Smart*Light) 
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Brilliance Comparison 

Synchrotron bending magnet 
(DUBBLE @ ESRF) 

liquid Ga Kα  
(Excillum) 

rotating 
anode W Kα 



ICS sources: Lyncean 
first commercial ICS source 

• Limited in energy 
• Poor tunability 
• Long pulses 



ICS sources: 
ThomX 

under construction 



• Lower emittance beams  higher X-ray coherence 
• Easier alignment, fast change of X-ray energy 

RF potogun Solenoid X-band LINAC 
accelerator 

Dipole bending 
magnet 

Quadrupole 
focusing  

triplet 

Beam  
dump 

2-3 m 

3 MeV 25 MeV 

LINAC-based ICS sources: why? 

X-ray beam 

X-ray beam 

burst mode 
electron beam 



30 cm 

24 disks 

60 mm 

Enabling technology: compact 12 GHz X-band LINAC 

• 12 GHz accelerator structure 
• 50 MV/m average operating gradient  
 (Max average gradient 100 MV/m) 

X-band test facility @ CERN 

1 m long accelerator structure sufficient for generating up to ~100 keV 
monochromatic X-ray beams 

Developed by CERN, PSI and VDL-ETG collaboration 



NOVEL ACCELERATOR CONCEPTS 



Laser wakefield accelerator based light sources: potential applications and requirements 
 
F Albert1, A G R Thomas2, S P D Mangles3, S Banerjee4, S Corde5, A Flacco6, M Litos5, D Neely7, J Vieira8, 
Z Najmudin3Show full author list 
 
Published 22 July 2014 • © 2014 IOP Publishing Ltd 
Plasma Physics and Controlled Fusion, Volume 56, Number 8  

Laser Plasma Accelerator 

• Extremely high gradients 
• Low efficiency 
• Shot-to-shot unstable 



Laser Dielectric Accelerator 

• High gradient 
• Hard to align 
• Still requires relatively high injection 

energy 

Demonstration of electron acceleration in a laser-driven dielectric microstructure 
E. A. Peralta et. al. Nature 503, 91–94 (07 November 2013) doi:10.1038/nature12664 



Extreme Ideas 

• Use graphine and atomic lattice 
structures to achieve electron 
accelerator 

Towards graphene plasmon-based free-electron infrared to X-ray sources 
Liang Jie Wong et. al. Nature Photonics 10, 46–52 (2016) 
    doi:10.1038/nphoton.2015.223  
http://nature.com/articles/doi:10.1038/nphoton.2015.223 
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