Future Light Sources

Mark Boland AOF Synchrotron School 29 May 2017

CREATING RADIATION

Electrons interacting with atoms to make x-rays

 Traditionally x-rays are created using energetic electrons interacting with atomic electrons

X-ray production by energy conversion. J. Anthony Seibert J. Nucl. Med. Technol. 2004;32:139-147

X-ray tube spectrum

- Not tunable, x-ray lines characteristic of the material
- Broad angular and spectral distribution
- Low Coherence

Relativistic Lorentz Boost

Dipole Magnet Synchrotron Radiation

Radiation from Relativistic electrons

- Store relativistic electrons in a magnetic trap called a storage ring
- Achieve high currents (~500 mA) and fast repetition rates (~500 MHz)
- Tunable in energy and time

CERN Courier Nov 30, 2010 Making X-rays: bright times ahead for FELs

GENERATIONS OF LIGHT SOURCES

Current lab X-ray Laboratory Sources

X-ray tubes:

- Broadband with few characteristic lines
- Reasonable photon flux but limited brilliance

Exciting development:

Liquid Ga source:

- 9.2 keV line (Ga K_α)
- Very good brilliance
- Unfortunately no wavelength tunability

www.excillum.com info@excillum.com

First Generation Storage Rings

- Rings build for colliding beams
- Photon beamlines operated parasitically
- Machines built and run primarily for High Energy Physics

Stanford Synchrotron Radiation Project pilot project beamline inside SPEAR, 07/06/1973. (SLAC Archives)

Second Generation Storage Rings

Febbraio 1955: L'elettrosincrotrone in funzione; in alto a sinistra l'iniettore

- Dedicated machines
- Large emittance
- Bending magnet radiation
- Low energy x-rays

Third Generation Storage Rings

- Dedicated user facilities for photon sources
- Addition of straight sections for Insertion Devices (IDs)
- Pictured are two pioneers:
 - Herman Winick pioneer of the use of IDs and
 - Toshiyuki Mitsuhashi pioneer of the measurement of Synchrotron Radiation properties

Fourth Generation Storage Rings

- Ultra low emittance
- Improved design and technology
- High quality insertion devices

MAX IV, Lund University, Sweden

Rapid Development in Brightness

- Constantly improving design and technology
- High quality magnets
- Feedback systems to stabilise high current electron beams

Storage Ring World Map

Fig. 4. Synchrotron radiation sources around the world.

M.E. Couprie

New generation of light sources: Present and future 🖈

Journal of Electron Spectroscopy and Related Phenomena, Volume 196, 2014, 3-13

http://dx.doi.org/10.1016/j.elspec.2013.12.007

Enabling Technology

- Compact magnets with high gradients
- Vacuum technology for small pipes

Evolution of Storage Rings

emittance scaling

Liu Lin, IPAC'17

New Storage Rings and Upgrade Plans

Machine	Energy [GeV]	Circum. [m]	Emit. [pm]	N _B	Status	
MAX-IV	3	528	140	330	operation,	new
Sirius	3	518	100	250	construction,	new
ESRF-U	6	844	224	135	construction,	upgrade
ALS-U	2	196	108	109	planned,	upgrade
APS-U	6	1104	280	42	planned,	upgrade
CLS-II	3	510	147	186	planned,	new
Diamond-II	3	561	144	140	planned,	upgrade
Elettra-II	2	259	72	250	planned,	upgrade
HEPS	6	1296	336	59	planned,	new
ILSF	3	528	100	275	planned,	new
PEP-X	4.5	2199	12		planned,	upgrade
PETRA-IV	6	2304	504	12	planned,	upgrade
SLS-II	2.4	290	84	103	planned,	upgrade
Soleil-II	2.75	354	104	230	planned,	upgrade

ALTERNATIVES TO STORAGE RINGS

Free Electrons Lasers

Nature Photonics 4, 814-821 (2010) doi:10.1038/nphoton.2010.239

- Bunches of electrons from a linac pass into an undulator
- Over time microbunches form enhancing the coherence
- Radiation emission coherent, N² with the number of electrons (c.f. N for a storage ring)
- 10³³ instantaneous brightness on femtosecond time scale

Radiation Time Structure

- Storage Ring time structure ~10 ps every ~1 ns
- FEL time structure ~10 fs every ~1 ms
- Fast time structure allows pumpprobe experiments:
 - Excite sample with one photon source
 - Measure relaxation of sample with varying time delay

Fig. 6. Map of FELs: in project in italic, in red for VUV soft X ray, in blue for hard X-ray. (For interpretation of the references to color in this text, the reader is referred to the web version of the article.)

M.E. Couprie

New generation of light sources: Present and future 🛧

Journal of Electron Spectroscopy and Related Phenomena, Volume 196, 2014, 3-13

http://dx.doi.org/10.1016/j.elspec.2013.12.007

Limitations of XFELs

- Very large and expensive
- Only 1-2 beamlines can operate at a time

Inverse Compton Scattering (ICS):head on collision

$$\lambda_x = \frac{\lambda_0}{4\gamma^2} (1 + \gamma^2 \theta^2)$$

- X-rays emitted in narrow cone, half angle γ^{-1}
- X-ray energy dependent on emission angle
- 1% energy spread if $\theta < 0.1 \gamma^{-1}$

Electron energy	Lorentz factor y	X-ray Wavelength	X-ray energy	Emission angle 0.1 γ^{-1}
5 MeV	11	10.8 Å	1.2 keV	9 mrad
15 MeV	30	1.4 Å	9.1 keV	3 mrad
25 MeV	50	0.50 Å	24.7 keV	2 mrad
50 MeV	99	0.13 Å	96.7 keV	1 mrad

Brilliance Comparison

ICS sources: Lyncean *first commercial ICS source*

- Limited in energy
- Poor tunability
- Long pulses

Journal of Synchrotron Radiation

ISSN 0909-0495

Received 6 September 2008 Accepted 23 October 2008 Hard X-ray phase-contrast imaging with the Compact Light Source based on inverse Compton X-rays

Martin Bech,^{a*} Oliver Bunk,^b Christian David,^b Ronald Ruth,^{c,d} Jeff Rifkin,^c Rod Loewen,^c Robert Feidenhans'l^a and Franz Pfeiffer^{b,e*}

ICS sources: ThomX under construction

Laser /Cavity system

- Pulsed laser : ps , ~ 1W average
- Optical fiber amplification \rightarrow (100 W) 2-3 µJ/pulse
- Optical FP cavity amplification
 → (gain 10000)
- ightarrow 1 MW stored inside the cavity
 - → (20-30 mJ/pulse)

LINAC-based ICS sources: why?

Enabling technology: compact 12 GHz X-band LINAC

Developed by CERN, PSI and VDL-ETG collaboration

1 m long accelerator structure sufficient for generating up to ~100 keV monochromatic X-ray beams

NOVEL ACCELERATOR CONCEPTS

Laser Plasma Accelerator

Laser wakefield accelerator based light sources: potential applications and requirements

F Albert1, A G R Thomas2, S P D Mangles3, S Banerjee4, S Corde5, A Flacco6, M Litos5, D Neely7, J Vieira8, Z Najmudin3Show full author list

Published 22 July 2014 • © 2014 IOP Publishing Ltd Plasma Physics and Controlled Fusion, Volume 56, Number 8

- Extremely high gradients
- Low efficiency
- Shot-to-shot unstable

Laser Dielectric Accelerator

- High gradient
- Hard to align
- Still requires relatively high injection energy

Demonstration of electron acceleration in a laser-driven dielectric microstructure E. A. Peralta et. al. Nature 503, 91–94 (07 November 2013) doi:10.1038/nature12664

Extreme Ideas

• Use graphine and atomic lattice structures to achieve electron accelerator

Towards graphene plasmon-based free-electron infrared to X-ray sources Liang Jie Wong et. al. Nature Photonics 10, 46–52 (2016) doi:10.1038/nphoton.2015.223 http://nature.com/articles/doi:10.1038/nphoton.2015.223