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Slides for study before the lecture

Please study the slides on relativity and
cyclotron focusing before the lecture and ask
guestions to clarify any points not understood
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Relativistic definitions

Energy of a particle at rest

E, =m,C

Total energy of a moving particle
(definition of vy)

E

E=,E, =mCy s

Another relativistic variable is defined:

~momentum xc  pc
energy E

V
C

Alternative axioms you may have learned

MoC?

/1 _ ,32 MoV mycp

E =

p=mv= 2 2
V1-4> 1-p : :

" J1-(/o?  1-f

YOou can prove:
pc = fE = moCZ(IB7/)
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Newton & Einstein

[ =wic

MNEWTOp, e ety

0 0
= E —=

Almost all modern accelerators accelerate particles to speeds very
close to that of light.

In the classical Newton regime the velocity of the particle increases
with the square root of the kinetic energy.

As v approaches c it is as if the velocity of the particle "'saturates™

One can pour more and more energy into the particle, giving it a
shorter De Broglie wavelength so that it probes deeper into the sub-
atomic world

Velocity increases very slowly and asymptotically to that of light
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Magnetic rigidity

g8

p+dp

QE_¢|QQ_+md9ds:hjds
dt = dt ds dt p dt
=erB:e$B

dt

(Bp)= L= 2 AP My

ec  ec ec

(Bp) [T.m]= Eg - C‘i‘iivl]J —3.3356 (pc) [GeV]

Fig.Brho 4.8
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Transverse coordinates

Local centre
P of gyration

Central orbit

S' (Tangential to beam direction)
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Equation of motion in a cyclotron

¢ Non relativistic

d(mv)
~F B >
dt a ~
¢ Cartesian d(mv, ) _ d(mx) _ CI[ B — 7B
dt dt y z y
d{m /
( Vy): d(my) =q[2B, — xB, ]
dt dt
d(mv,) _d(mz)
ZJ — = B _ B
” i~ CI[X y y x]
¢ Cylindrical
d((;t[\r)_ mro® = q[rGBZ — ZBe]
M+ mro = q[2B, —rB, ]
dt
2
d((;t[]Z) — q[rBe — réBr]

Lecture 2 - E. Wilson — Slide 7



w=—28B,
mO

Cyclotron orbit equation

¢ For non-relativistic particles (m = m,) and
with an axial field B, = -B,

m, (¥ —r6*)=—qréB,
M (ré +2rd) =qrB,
m,Z=0

¢ The solution is a closed circular trajectory
which has radius

R P
qB,
¢ and an angular frequency
0 = 4 B,
m

¢ Take into account special relativity by

E
m:moy:moE—
0

¢ And increase B with ¥ to stay synchronous!
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Cyclotron focusing — small deviations

¢ See earlier equation of motion

d(mr : . _
(dt )+mr¢92 +q[r6’BZ —zBe] =0

¢ If all particles have the same velocity:

pézVO:Z

2
i(mdp}rmvo +ev,B, =0
dt dt Yo,

¢ Change independent variable and substitute for small
deviations

d d
a:VO—, AB, =B, -B,, X=p-p,

Z Z
¢ Substitute

_ Py =MV,
¢ Togive

1 d( dxj X 1 AB,
_I_

— + =0
mv, ds Pe ds/) p° p, B,
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Cyclotron focusing — field gradient

¢ From previous slide

1 d(p dijr X  1AB, _
" ds

> 0
Py Py By

mv, ds

¢ Taylor expansion of field about orbit

¢ Define field index (focusing gradient)

1 &

(Bopo) 2

¢ To give horizontal focusing
1d(p0 dx)+(12—ij =0
p, ds ds Jo,
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Fields and force in a quadrupole

No field on the axis

S\L |7 Field strongest here
RSy Bl / B oc X
oty | o (hence is linear)

22| QA Force restores
Gradient _— 9By

fh OX
W77 Normalised:
F 1 0B,
Marth o K=— .
N (Bp) Ox
POWER OF LENS
¢ 0B, 1
i K= —L =
Dechuses IN (Bp) ox
vertical plane
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Weak focusing In a synchrotron

et

______

4
NN
-

The Cosmotron magnet

N | // / ;Ngi
'S / / ‘ S

¢ Vertical focusing comes from the curvature
of the field lines when the field falls off with
radius ( positive n-value)

¢ Horizontal focusing from the curvature of the
path

¢ The negative field gradient defocuses
horizontally and must not be so strong as to
cancel the path curvature effect

Lecture 2 - E. Wilson — Slide 12



Gutter

Y !
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Transverse ellipse

Area =TC\_/8B_.\/8/B =g

fﬁm/ |

-
X
- \j‘fhf
&

Jep
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Alternating gradients

=== et
e e
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Envelope

]

ya
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Particle trajectories

X'y
Tall ellipse at waist
X
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Equation of motion In transverse co-
ordinates

@ Hill’s equation (linear-periodic coefficients)

d2
) _ 1 dBZ ; |
wnere (B ) dX atqua rupoles

like restoring constant in harmonic motion
# Solution (e.g. Horizontal plane)

y = B(s)Nesin[¢(s)+ ¢, ]

€ Condition ds

@ Property of machine /,3(3)
@ Property of the particle (beam) ¢

® Physical meaning (H or V planes)

Envelope \/%

Maximum excursions

y =&b(s) y' =~el p(s)
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Check Solution of Hill

¢ Differentiate  y =+/B(s)& cos(4(s) + ¢,)
substituting W = \/,E , 9= ¢(s)+ ¢,

y' = g% {W'(S) COS @ — % w(s)sin ¢}

¢ Necessary condition for solution to be true

dg 1 1

ds A(s) WA(s)

r __ }/2 / l -
o Differentiate dgaiff {W (s)cos ¢ - W () Sin ¢}

cancels td)

must be zerd

Lecture 2 - E. Wilson — Slide



Continue checking

= '(sycos ¢ - sm¢+\\llvv;((s))sm

+Ky

s
W (S) \

cancels td)

kw(s)cos ¢

must be zerd

¢ The condition that these three coefficients
sum to zero is a differential equation for
the envelope

1

——~=0
w*(s)

W' (S) + kw(s

alternatively

1 1 .- 2
=B —= B+ kB =1
BB =B+ kB
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Summary

¢ Transverse coordinates

¢ Magnetic rigidity

¢ Fields and force in a quadrupole

¢ Transverse coordinates

¢ Gutter

¢ Transverse ellipse

¢ Alternating gradients

¢ Equation of motion in transverse coordinates
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