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Slides for study before the lecture

Please study the slides on relativity and 
cyclotron focusing before the lecture and ask 
questions to clarify any points not understood
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Relativistic definitions 

  
E =

m0c2

1 −β 2

  
p = mv =

m0v

1 −β 2
=

m0cβ

1− β 2

 
γ =

1

1 − v c( )2
=

1

1− β 2

 
γ =

E
E0

  E0 = m0c
2

Energy of a particle at rest

Total energy of a moving particle
(definition of γ)

  E = γE0 = m0c
2 γ

Another relativistic variable is defined:

Alternative axioms you may have learned 

You can prove:

  
β =

momentum × c
energy

=
pc
E

=
v
c

  pc = βE = m0c
2 (βγ )
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Newton  & Einstein

Almost all modern accelerators accelerate particles to speeds very 
close to that of light. 
In the classical Newton regime the velocity of the particle increases 
with the square root of the kinetic energy. 
As v approaches c  it is as if the velocity of the particle "saturates" 
One can pour more and more energy into the particle, giving it a
shorter De Broglie wavelength so that it  probes deeper into the sub-
atomic world
Velocity increases very slowly and asymptotically to that of light 
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dp
dt

= p dθ
dt

= p dθ
ds

ds
dt

=
p
ρ

ds
dt

= ev × B = e ds
dt

B

Magnetic rigidity

1
ρ

=
dθ
ds

Bρ( ) =
p
e

=
pc
ec

=
βE
ec

=
βγE0

ec
=

m0c
e

βγ( )

Fig.Brho 4.8
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Transverse coordinates

ρ

s



Lecture 2 - E. Wilson –- Slide 7

Equation of motion in a cyclotron

Non relativistic

Cartesian

Cylindrical
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For non-relativistic particles (m = m0) and 
with an axial field Bz = -B0

The solution is a closed circular trajectory 
which has radius

and an angular frequency

Take into account special relativity by

And increase B with γ to stay synchronous!
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Cyclotron orbit equation
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Cyclotron focusing – small deviations

See earlier equation of motion

If all particles have  the same velocity:

Change independent variable and substitute for small 
deviations

Substitute 

To give 

2
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0 0z
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From previous slide

Taylor expansion of field about orbit

Define field index (focusing gradient)

To give horizontal focusing

Cyclotron focusing – field gradient
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Fields and force in a quadrupole

No field on the axis
Field strongest here

 B ∝ x
(hence is linear)
Force restores
Gradient

Normalised:

POWER OF LENS

Defocuses  in
vertical plane

( )

Fig. cas 10.8
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Weak focusing in a synchrotron

Vertical focusing comes from the curvature 
of the field lines when the field falls off with 
radius ( positive n-value)
Horizontal focusing from the curvature of the 
path
The negative field gradient defocuses 
horizontally and must not be so strong as to 
cancel the path curvature effect

The Cosmotron magnet
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Gutter



Lecture 2 - E. Wilson –- Slide 14

Transverse ellipse

εβ

βε /

πε=βεεβπ= /. Area
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Alternating gradients
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Equation of motion in transverse co-
ordinates

Hill’s equation (linear-periodic coefficients)

where                                  at quadrupoles

like restoring constant in harmonic motion
Solution (e.g. Horizontal plane)

Condition

Property of machine
Property of the particle (beam) ε
Physical meaning (H or V planes)

Envelope
Maximum excursions

k = − 1
Bρ( )

dBz
dx

 β s( )
  
ϕ = ds

β s( )∫

  ̂ y = εβ s( )  ′ ˆ y = ε / β s( )

 εβ s( )

y = β s( ) ε sin φ s( ) + φ0[ ]

d 2y
ds2 + k s( )y = 0



Lecture 2 - E. Wilson –- Slide 17

Check Solution of Hill

Differentiate
substituting

Necessary condition for solution to be true

so

Differentiate again

add both sides

w = β   ,       φ = φ(s) + φo

′ y = ε
1

2 ′ w (s) cosφ −
dφ
ds

w(s)sin φ⎧ ⎨ ⎩ 
⎫ ⎬ ⎭ 

dφ
ds

=
1

β (s)
=

1
w2(s)

′ y = ε
1

2 ′ w (s) cosφ −
1

w (s)
sin φ

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

′ ′ y = ε
1

2 ′ ′ w (s)cos φ −
′ w (s)

w2(s)
sin φ +

′ w (s)
w 2(s)

sin φ
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

−
1

w3(s)
cosφ

+ky +kw(s)cos φ

cancels to 0

must be zero 0

y = β(s)ε  cos φ(s) + φo( )
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Continue checking

The condition that these three coefficients
sum to zero is a differential equation for 
the envelope 

′ ′ y = ε
1

2 ′ ′ w (s)cos φ −
′ w (s)

w2(s)
sin φ +

′ w (s)
w 2(s)

sin φ
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

−
1

w3(s)
cosφ

+kw(s)cos+ky φ

cancels to 0

must be zero 0

′ ′ w (s) + kw(s) −
1

w3(s)
= 0

1
2

β ′ ′ β −
1
4

′ β 2 + kβ 2 = 1

alternatively
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Summary

Transverse coordinates
Magnetic rigidity
Fields and force in a quadrupole
Transverse coordinates 
Gutter
Transverse ellipse
Alternating gradients
Equation of motion in transverse coordinates
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