Lecture 3 - Transverse Dynamics I

ACCELERATOR PHYSICS

Mellbourne

E. J. N. Wilson

Slides for study before the lecture

Please study the slides on relativity and cyclotron focusing before the lecture and ask questions to clarify any points not understood

Relativistic definitions

Energy of a particle at rest

$$
E_{0}=m_{0} c^{2}
$$

Total energy of a moving particle (definition of γ)

$$
E=\gamma E_{0}=m_{0} c^{2} \gamma
$$

$$
\gamma=\frac{E}{E_{0}}
$$

Another relativistic variable is defined:

$$
\beta=\frac{\text { momentum } \times c}{\text { energy }}=\frac{p c}{E}=\frac{v}{c}
$$

Alternative axioms you may have learned
$E=\frac{m_{0} c^{2}}{\sqrt{1-\beta^{2}}}$

$$
p=m v=\frac{m_{0} v}{\sqrt{1-\beta^{2}}}=\frac{m_{0} c \beta}{\sqrt{1-\beta^{2}}}{ }^{\gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}}
$$

You can prove:

$$
p c=\beta E=m_{0} c^{2}(\beta \gamma)
$$

Lecture 2 - E. Wilson -- slide 3

Newton \& Einstein

Almost all modern accelerators accelerate particles to speeds very close to that of light.

- In the classical Newton regime the velocity of the particle increases with the square root of the kinetic energy.
- As vapproaches cit is as if the velocity of the particle "saturates"
- One can pour more and more energy into the particle, giving it a shorter De Broglie wavelength so that it probes deeper into the subatomic world
- Velocity increases very slowly and asymptotically to that of light

Magnetic rigidity

$$
\begin{aligned}
& \overline{\mathrm{p}}+\overline{\mathrm{dp}} \\
& \frac{d \mathbf{p}}{d t}=|\mathbf{p}| \frac{d \theta}{d t}=|\mathbf{p}| \frac{d \theta}{d s} \frac{d s}{d t}=\frac{|\mathbf{p}| \frac{d s}{\rho} \frac{d t}{d t}, ~}{} \\
& =e \mathbf{v} \times \mathbf{B}=e \frac{d s}{d t} B \\
& (B \rho)=\frac{p}{e}=\frac{p c}{e c}=\frac{\beta E}{e c}=\frac{\beta \overline{\beta E}_{0}}{e c}=\frac{m_{0} c}{e}(\beta \gamma) \\
& \text { (B९) }[\mathrm{T} . \mathrm{m}]=\frac{p c}{e c}=\frac{p c[e \mathrm{eV}]}{c\left[m \cdot \mathrm{~s}^{-1}\right]}=3.3356(\mathrm{pc})[\mathrm{GeV}]
\end{aligned}
$$

Transverse coordinates

S (Tangential to beam direction)

Equation of motion in a cyclotron

Non relativistic

$$
\frac{d(m \mathbf{v})}{d t}=\mathbf{F} \quad \frac{d(m \mathbf{v})}{d t}=q[\mathbf{v} \times \mathbf{B}]
$$

Cartesian

$$
\begin{aligned}
& \frac{d\left(m v_{x}\right)}{d t}=\frac{d(m \dot{x})}{d t}=q\left[\dot{y} B_{z}-\dot{z} B_{y}\right] \\
& \frac{d\left(m v_{y}\right)}{d t}=\frac{d(m \dot{y})}{d t}=q\left[\dot{z} B_{x}-\dot{x} B_{z}\right] \\
& \frac{d\left(m v_{z}\right)}{d t}=\frac{d(m \dot{z})}{d t}=q\left[\dot{x} B_{y}-\dot{y} B_{x}\right]
\end{aligned}
$$

Cylindrical

$$
\begin{aligned}
& \frac{d(m \dot{r})}{d t}-m r \dot{\theta}^{2}=q\left[r \dot{\theta} B_{z}-\dot{z} B_{\theta}\right] \\
& \frac{d(m r \dot{\theta})}{d t}+m \dot{r} \dot{\theta}=q\left[\dot{z} B_{r}-\dot{r} B_{z}\right] \\
& \frac{d(m \dot{z})^{2}}{d t}=q\left[r B_{\theta}-r \dot{\theta} B_{r}\right]
\end{aligned}
$$

$w=\frac{q}{m_{0}} B_{0}$

Cyclotron orbit equation

For non-relativistic particles ($\mathrm{m}=\mathrm{m}_{0}$) and with an axial field $B_{z}=-B_{0}$

$$
\begin{aligned}
& m_{0}\left(\ddot{r}-r \dot{\theta}^{2}\right)=-q r \dot{\theta} B_{z} \\
& m_{0}(r \ddot{\theta}+2 r \dot{\theta})=q \dot{r} B_{z} \\
& m_{0} \ddot{z}=0
\end{aligned}
$$

The solution is a closed circular trajectory which has radius

$$
R=\frac{p}{q B_{z}}
$$

and an angular frequency

$$
\omega=\frac{q}{m_{0}} B_{z}
$$

Take into account special relativity by

$$
m=m_{0} \gamma=m_{0} \frac{E}{E_{0}}
$$

And increase B with γ to stay synchronous!

Cyclotron focusing - small deviations

See earlier equation of motion

$$
\frac{d(m \dot{r})}{d t}+m r \dot{\theta}^{2}+q\left[r \dot{\theta} B_{z}-\dot{z} B_{\theta}\right]=0
$$

- If all particles have the same velocity:

$$
\begin{gathered}
\rho \dot{\theta}=v_{0}=\dot{z} \\
\frac{d}{d t}\left(m \frac{d \rho}{d t}\right)+\frac{m v_{0}^{2}}{\rho}+e v_{0} B_{z}=0
\end{gathered}
$$

Change independent variable and substitute for small deviations
$\frac{d}{d t}=v_{0} \frac{d}{d s}, \quad \Delta B_{z}=B_{z}-B_{0}, \quad x=\rho-\rho_{0}$

- Substitute

$$
p_{0}=m v_{0}
$$

To give

$$
\frac{1}{m v_{0}} \frac{d}{d s}\left(p_{0} \frac{d x}{d s}\right)+\frac{x}{\rho_{0}{ }^{2}}+\frac{1}{\rho_{0}} \frac{\Delta B_{z}}{B_{0}}=0
$$

Cyclotron focusing - field gradient

From previous slide

$$
\frac{1}{m v_{0}} \frac{d}{d s}\left(p_{0} \frac{d x}{d s}\right)+\frac{x}{\rho_{0}{ }^{2}}+\frac{1}{\rho_{0}} \frac{\Delta B_{z}}{B_{0}}=0
$$

- Taylor expansion of field about orbit

$$
B_{z}=B_{0}+\frac{\partial B_{z}}{\partial x} x+\frac{1}{2!} \frac{\partial^{2} B_{z}}{\partial x^{2}} x^{2}+\ldots \ldots .
$$

- Define field index (focusing gradient)

$$
k=-\frac{1}{\left(B_{0} \rho_{0}\right)} \frac{\partial B_{z}}{\partial x}
$$

- To give horizontal focusing

$$
\frac{1}{p_{0}} \frac{d}{d s}\left(p_{0} \frac{d x}{d s}\right)+\left(\frac{1}{\rho^{2}}-k\right) x=0
$$

Fields and force in a quadrupole

Weak focusing in a synchrotron

The Cosmotron magnet

- Vertical focusing comes from the curvature of the field lines when the field falls off with radius (positive n-value)
- Horizontal focusing from the curvature of the path
- The negative field gradient defocuses horizontally and must not be so strong as to cancel the path curvature effect

Gutter

Lecture 2 - E. Wilson -- slide 13

Transverse ellipse

$$
\text { Area }=\pi \sqrt{\varepsilon \beta} \cdot \sqrt{\varepsilon / \beta}=\pi \varepsilon
$$

Alternating gradients

Lecture 2 - E. Wilson -- Slide 15

Equation of motion in transverse coordinates

Hill's equation (linear-periodic coefficients)

$$
\frac{d^{2} y}{d s^{2}}+k(s) y=0
$$

where $k=-\frac{1}{(B \rho)} \frac{d B_{z}}{d x}$ at quadrupoles
like restoring constant in harmonic motion

- Solution (e.g. Horizontal plane)

$$
y=\sqrt{\beta(s)} \sqrt{\varepsilon} \sin \left[\phi(s)+\phi_{0}\right]
$$

- Condition

$$
\varphi=\int \frac{d s}{\beta(s)}
$$

- Property of machine

Property of the particle (beam) ε
Physical meaning (H or V planes)
Envelope
$\sqrt{\varepsilon \beta(s)}$
Maximum excursions

$$
\hat{y}=\sqrt{\varepsilon \beta(s)} \quad \hat{y}^{\prime}=\sqrt{\varepsilon / \beta(s)}
$$

Check Solution of Hill

- Differentiate $\quad y=\sqrt{\beta(s) \varepsilon} \cos \left(\phi(s)+\phi_{o}\right)$
substituting $\quad w=\sqrt{\beta}, \quad \phi=\phi(s)+\phi_{o}$

$$
y^{\prime}=\varepsilon^{1 / 2}\left\{w^{\prime}(s) \cos \phi-\frac{d \phi}{d s} w(s) \sin \phi\right\}
$$

- Necessary condition for solution to be true
$\frac{d \phi}{d s}=\frac{1}{\beta(s)}=\frac{1}{w^{2}(s)}$
- Differentiate ágain $\underline{\varepsilon}^{\frac{1}{2}}\left\{w^{\prime}(s) \cos \phi-\frac{1}{w(s)} \sin \phi\right\}$

Continue checking

The condition that these three coefficients sum to zero is a differential equation for the envelope

$$
w^{\prime \prime}(s)+k w(s)-\frac{1}{w^{3}(s)}=0
$$

alternatively

$$
\frac{1}{2} \beta \beta^{\prime \prime}-\frac{1}{4} \beta^{\prime 2}+k \beta^{2}=1
$$

Summary

- Transverse coordinates

Magnetic rigidity
Fields and force in a quadrupole
Transverse coordinates
Gutter
Transverse ellipse
Alternating gradients
Equation of motion in transverse coordinates

