
Lecture 4 - E. Wilson – 25-Feb-08 - Slide 1

Lecture 4  - Magnets

ACCELERATOR PHYSICS

Melbourne

E. J. N. Wilson



Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2

Lecture 4 – Magnets - Contents

Magnet types
Multipole field expansion 
Taylor series expansion
Dipole bending magnet
Diamond quadrupole
Various coil and yoke designs
Power consumption of a magnet
Magnet cost v. field
Coil design geometry
Field quality
Shims extend the good field
Flux density in the yoke
Magnet ends 
Superconducting magnets
Magnetic rigidity 
Bending Magnet 
Fields and force in a quadrupole



Lecture 4 - E. Wilson – 25-Feb-08 - Slide 3

Components of a synchrotron

RING.GIF, Fig. sans nom 1_PULSE, Annexe1C
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Dipoles bend the beam

Quadrupoles focus it

Sextupoles correct chromaticity

Magnet types
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Multipole field expansion (polar)

 φ (r ,θ)Scalar potential obeys Laplace
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whose solution is 
 
φ = φn

n=1

∞

∑ r n sin nθ

Example of an octupole whose potential
oscillates like sin 4θ around the circle
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Taylor series expansion

  
φ = φn

n=1

∞

∑ r n sin nθ

Field in polar coordinates:

  
Br = −

∂φ
∂r

,    Bθ =
1
r

∂φ
∂θ

  Br = φnnr n−1 sinnθ ,     Bθ = φnnr n−1 cosnθ

  

Bz = Br sin θ + Bθ cosθ

     = −φnnrn−1 cosθ cosnθ + sinθ sin nθ[ ]

     = φnnr n−1 cos n −1( )θ = φnnxn−1   (when y = 0)

Taylor series of multipoles

To get vertical field 

Fig. cas 1.2c
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Multipole field shapes
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Dipole bending magnet
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Diamond dipole
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Diamond quadrupole
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Various coil and yoke designs

''C' Core:
Easy access

Less rigid

‘H core’:
Symmetric;
More rigid;
Access  problems.

''Window Frame'
High quality field;
Major access problems
Insulation thickness
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Power consumption of a magnet

σ
=

A
NR
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NI/2

Bair = μ0 NI / (g + λ/μ);

g,  and  λ/μ are  the  'reluctance'  of  the  gap  and  
iron. A is the coil area, l is the length σ is 
conductivity

Approximation  ignoring  iron  reluctance (λ/μ << g ):

NI = B g /μ0
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Magnet cost v. field

Variation of cost with field B

0

1

2

3

4

5

6

7

8

9

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

2.
1

Field B (T)

Coil costs
Running costs
Pole costs

Yoke costs
Total

Pressure from need to save real estate
Constraint from saturation or critical 
current, synchrotron radiation
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Coil design geometry

Standard  design  is rectangular copper (or  aluminium) 
conductor, with  cooling  water tube. Insulation  is  glass 
cloth and epoxy  resin.

Amp-turns (NI)  are determined,  but  total copper  area  
(Acopper)  and  number  of  turns  (N)  are two degrees of 
freedom and need  to  be  decided.

Current  density:
j = NI/Acopper
Optimum  j  
determined  from  
economic criteria. 
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Field must be flat to 1 part per 10000
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Shims extend the good field

To  compensate  for  the  non-infinite  pole, shims 
are added at the pole edges. The area and shape 
of  the shims determine the amplitude of error 
harmonics which will be present.

Shim

A Quadrupole
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Flux density in the yoke
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Magnet ends 

The 'Rogowski' roll-off:
y = g/2 +(g/π) exp ((πx/g)-1);

Three dimensional computer calculation

10-1-2
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Bending Magnet 

Effect of a uniform bending (dipole) field

If                              then

Sagitta
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Fields and force in a quadrupole

No field on the axis
Field strongest here

 B ∝ x
(hence is linear)
Force restores
Gradient

Normalised:

POWER OF LENS

Defocuses  in
vertical plane

( )

Fig. cas 10.8
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