ACCELERATOR PHYSICS

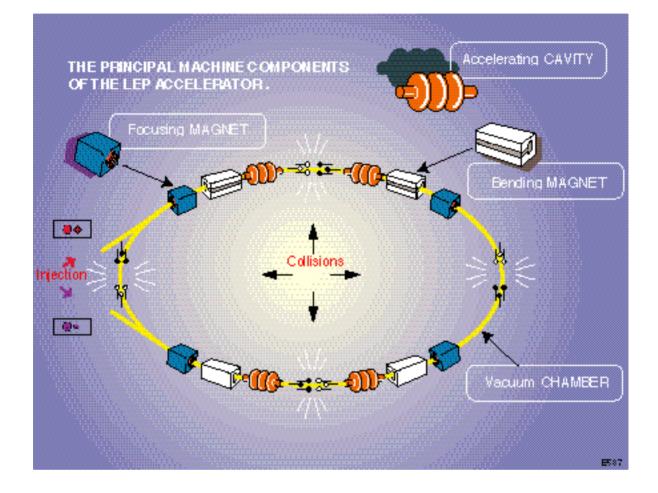
Melbourne

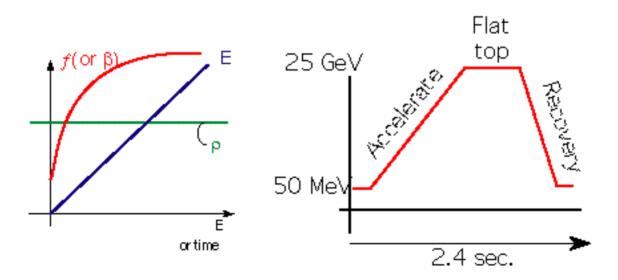
E. J. N. Wilson

Lecture 4 – Magnets - Contents

- Magnet types
- Multipole field expansion
- Taylor series expansion
- Dipole bending magnet
- Diamond quadrupole
- Various coil and yoke designs
- Power consumption of a magnet
- Magnet cost v. field
- Coil design geometry
- Field quality
- Shims extend the good field
- Flux density in the yoke
- Magnet ends
- Superconducting magnets
- Magnetic rigidity
- Bending Magnet
- Fields and force in a quadrupole

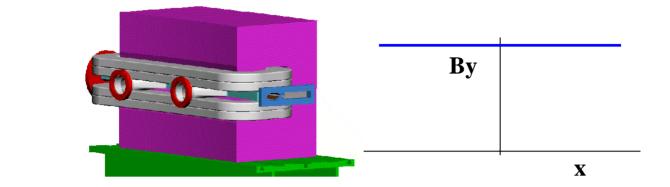
Components of a synchrotron



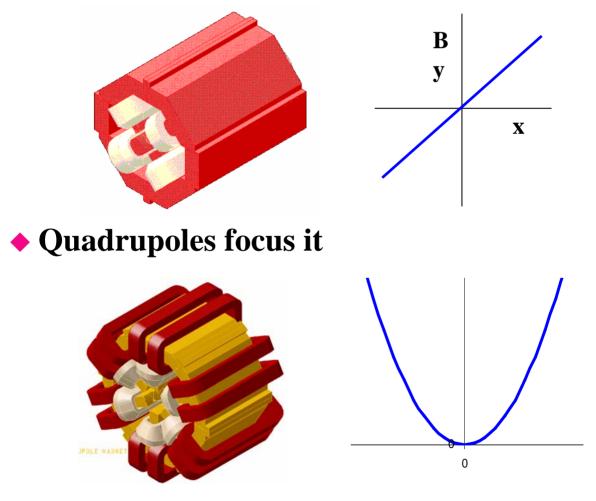


RING.GIF, Fig. sans nom 1_PULSE, Annexe1C Lecture 4 - E. Wilson – 25-Feb-08 - Slide 3

Magnet types

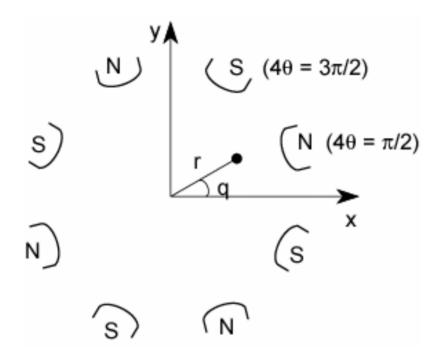


Dipoles bend the beam



Sextupoles correct chromaticity

Multipole field expansion (polar)



Scalar potential $\phi(\mathbf{r}, \theta)$ obeys Laplace

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \quad \text{or} \quad \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) = 0$$

whose solution is

$$\phi = \sum_{n=1}^{\infty} \phi_n r^n \sin n \theta$$

Example of an octupole whose potential oscillates like sin 4θ around the circle

Taylor series expansion

$$\phi = \sum_{n=1}^{\infty} \phi_n r^n \sin n \theta$$

Field in polar coordinates:

$$B_{r} = -\frac{\partial \phi}{\partial r}, \quad B_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$$

 $B_r = \phi_n nr^{n-1} \sin n\theta, \quad B_\theta = \phi_n nr^{n-1} \cos n\theta$

To get vertical field

$$B_{z} = B_{r} \sin \theta + B_{\theta} \cos \theta$$

$$= -\phi_{n} nr^{n-1} [\cos \theta \cos n\theta + \sin \theta \sin n\theta]$$

$$= \phi_{n} nr^{n-1} \cos(n-1) \theta = \phi_{n} nx^{n-1} \quad (\text{when } y = 0)$$

Taylor series of multipoles

$$B_{z} = \phi_{0} + \phi_{2} \cdot 2x + \phi_{3} \cdot 3x^{2} + \phi_{4} \cdot 4x^{3} + \dots$$

$$= B_{0} + \frac{1}{1!} \frac{\partial B_{z}}{\partial x} x + 2 \frac{\partial^{2} B_{z}}{\partial x^{2}} x^{2} + \frac{1}{3!} \frac{\partial^{3} B_{z}}{\partial x^{3}} x^{3} + \dots$$

Dip. Quad Sext Octupole

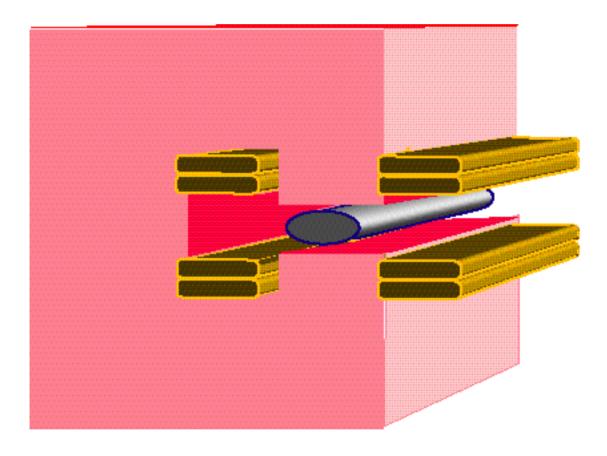
Lecture 4 - E. Wilson – 25-Feb-08 - Slide 6

Fig. cas 1.2c

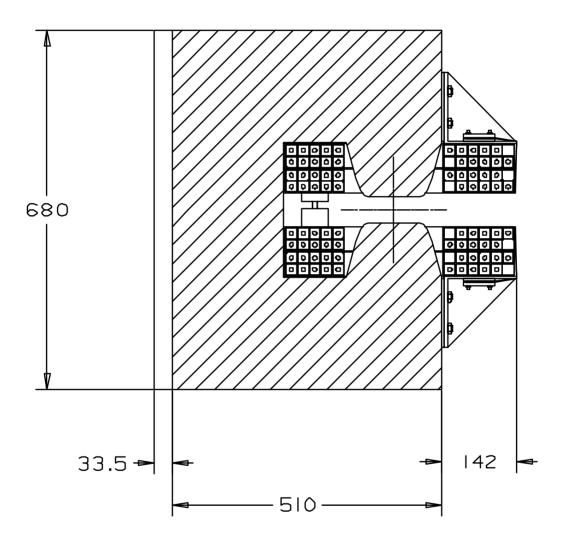
Multipole field shapes



Dipole bending magnet

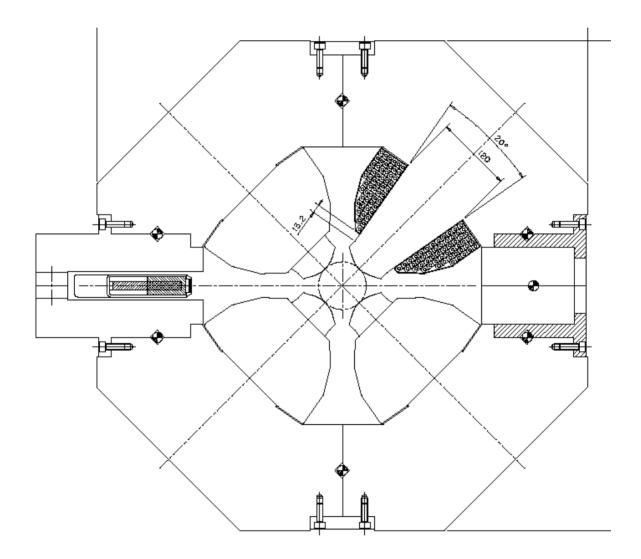


Diamond dipole



Lecture 4 - E. Wilson – 25-Feb-08 - Slide 9

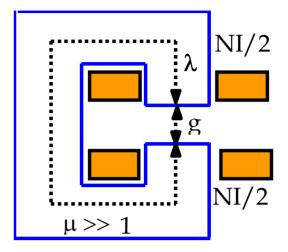
Diamond quadrupole



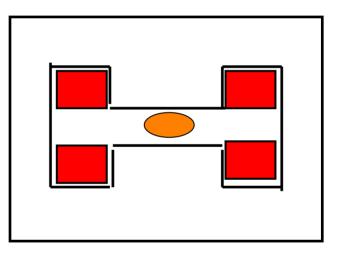
Lecture 4 - E. Wilson – 25-Feb-08 - Slide 10

Various coil and yoke designs

Easy access Less rigid

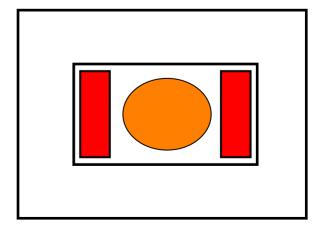


Symmetric; More rigid; Access problems.

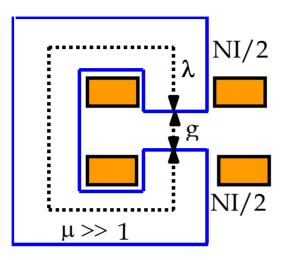


'<u>'Window Frame'</u>

High quality field; Major access problems Insulation thickness



Power consumption of a magnet



 $B_{air} = \mu_0 NI / (g + \lambda/\mu);$

g, and λ/μ are the 'reluctance' of the gap and iron. A is the coil area, l is the length σ is conductivity

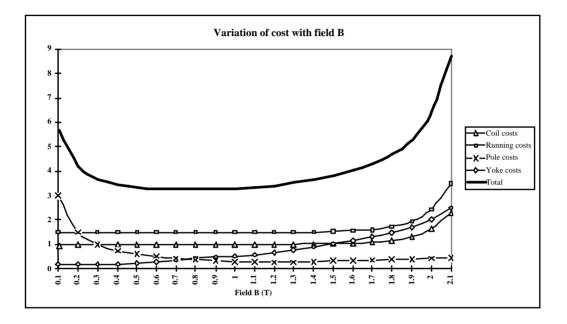
Approximation ignoring iron reluctance ($\lambda/\mu \ll g$):

$$NI = B g / \mu_0$$

$$R = \frac{2\ell N^2}{A\sigma}$$

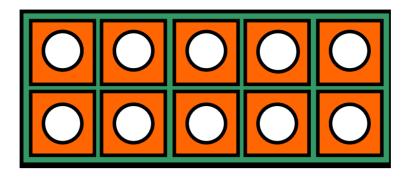
Power =
$$I^2 R = \frac{g^2 B^2 2\ell}{\mu_o^2 A \sigma}$$

Magnet cost v. field

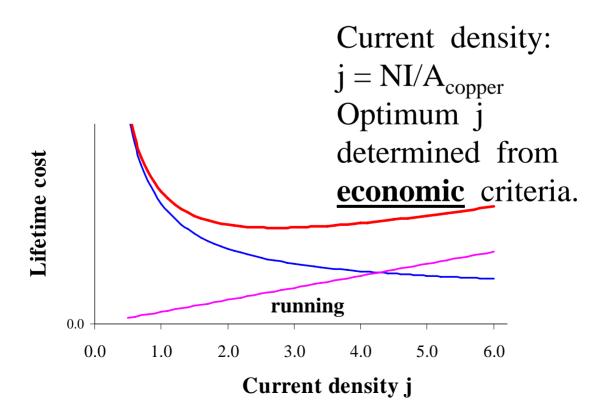


Pressure from need to save real estate Constraint from saturation or critical current, synchrotron radiation

Coil design geometry

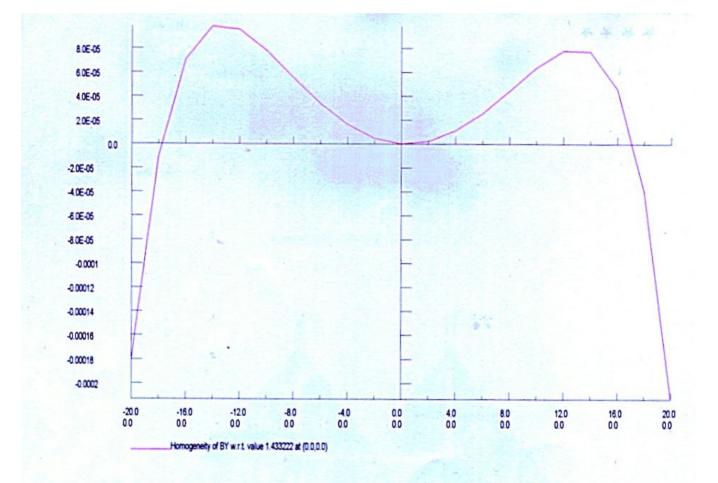


- Standard design is rectangular copper (or aluminium) conductor, with cooling water tube. Insulation is glass cloth and epoxy resin.
- Amp-turns (NI) are determined, but total copper area (Acopper) and number of turns (N) are two degrees of freedom and need to be decided.



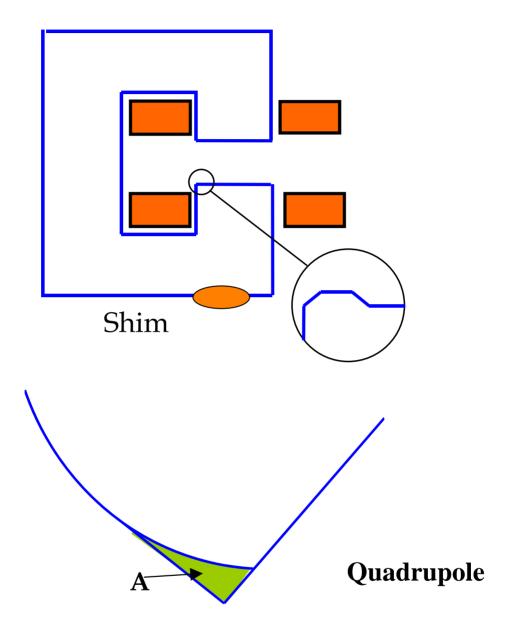
Lecture 4 - E. Wilson – 25-Feb-08 - Slide 14

Field must be flat to 1 part per 10000



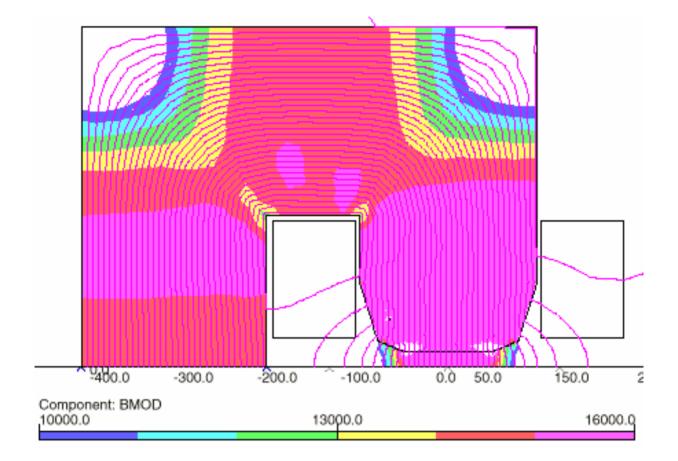
Lecture 4 - E. Wilson – 25-Feb-08 - Slide 15

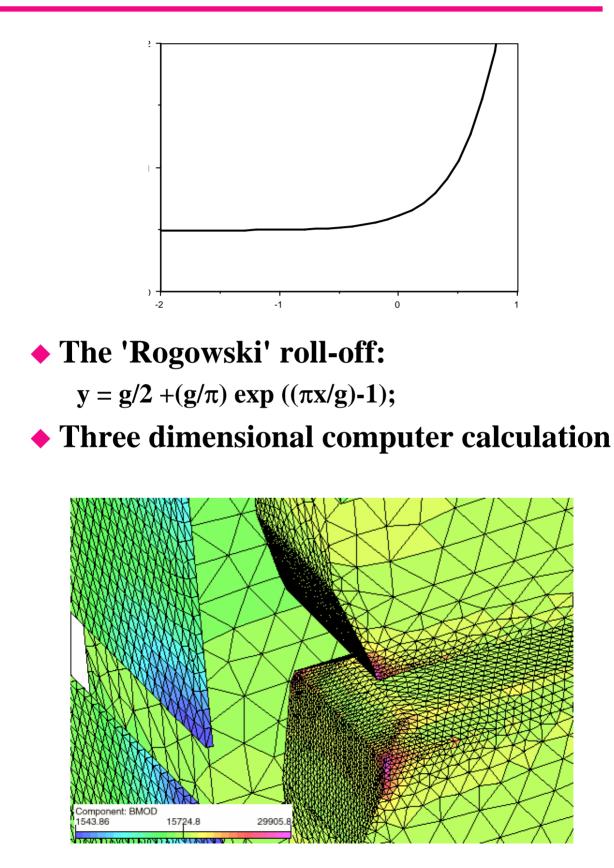
Shims extend the good field



To compensate for the non-infinite pole, shims are added at the pole edges. The area and shape of the shims determine the amplitude of error harmonics which will be present.

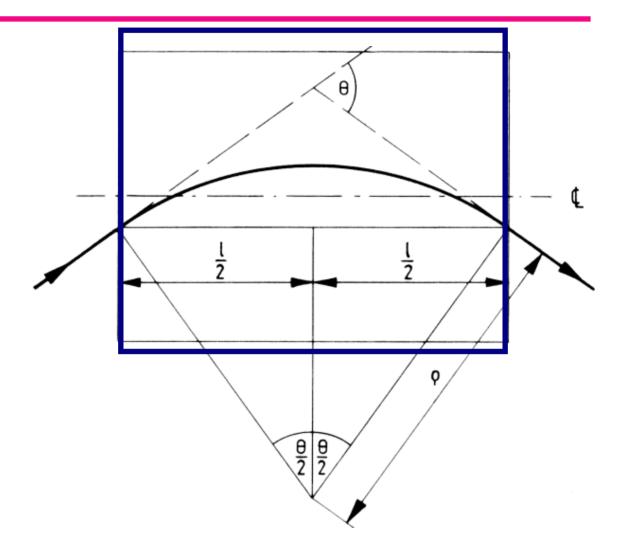
Flux density in the yoke





Lecture 4 - E. Wilson – 25-Feb-08 - Slide 18

Bending Magnet



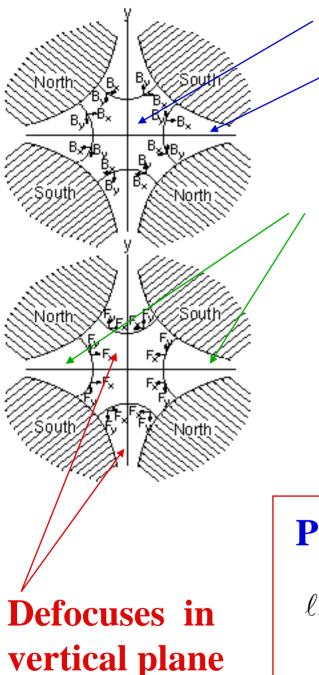
V Effect of a uniform bending (dipole) field

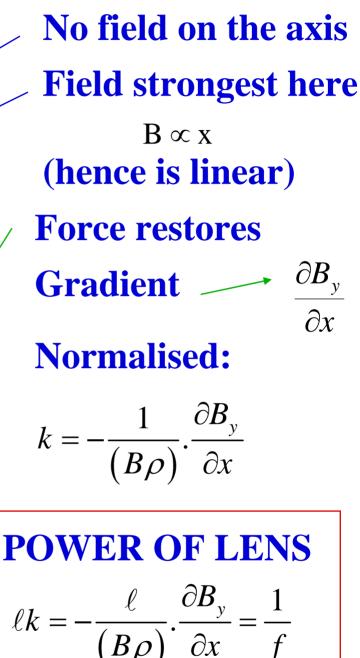
$$\sin(\theta/2) = \frac{\ell}{2\rho} = \frac{\ell B}{2(B\rho)}$$

$$\forall \text{ If } \quad \theta << \pi/2 \quad \text{ then } \quad \theta \approx \frac{\ell B}{2(B\rho)}$$

$$\forall \text{ Sagitta } \quad \pm \frac{\rho}{2} (1 - \cos(\theta/2)) \approx \frac{\rho \theta^2}{16} = \frac{\ell \theta}{16}$$

Fields and force in a quadrupole





Summary

- Magnet types
- Multipole field expansion
- Taylor series expansion
- Dipole bending magnet
- Diamond quadrupole
- Various coil and yoke designs
- Power consumption of a magnet
- Magnet cost v. field
- Coil design geometry
- Field quality
- Shims extend the good field
- Flux density in the yoke
- Magnet ends
- Superconducting magnets
- Magnetic rigidity
- Bending Magnet
- Fields and force in a quadrupole