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Previous lecture — Magnets Summary

¢ Magnet types

¢ Multipole field expansion

¢ Taylor series expansion

¢ Dipole bending magnet

¢ Diamond quadrupole

+ Various coil and yoke designs

¢ Power consumption of a magnet
¢ Magnet cost v. field

¢ Coll design geometry

¢ Field quality

¢ Shims extend the good field

¢ Flux density in the yoke

¢ Magnet ends

¢ Superconducting magnets

¢ Magnetic rigidity

¢ Bending Magnet

# Fields and force in a quadrupole
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Lecture 5 - Imperfections - Contents

¢ Acceptance

¢ Making an orbit bump grow

¢ Circle diagram

¢ Closed orbit in the circle diagram
¢ Uncorrelated errors

¢ Sources of distortion

¢ FNAL measurement

¢ Diad bump

¢ Overlapping beam bumps

¢ Effect of quadrupole errors.

¢ Chromaticity

¢ Closed orbit in the circle diagram
¢ Gradient errors

¢ Working daigram
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Acceptance
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¢ Largest particle grazing an obstacle defines
acceptance.

¢ Acceptance is equivalent to emittance
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Making an orbit bump grow

DIPOLE

¢ As we slowly raise the current in a dipole:

¢ The zero-amplitude betatron particle follows
a distorted orbit

¢ The distorted orbit is CLOSED
¢ It is still obeying Hill’s Equation

¢ Except at the kink (dipole) it follows a
betatron oscillation.

¢ Other particles with finite amplitudes
oscillate about this new closed orbit
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Circle diagram

initial

2(Q-27)

B (after one turn and
27+ 0.6 betatron ocillations)
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Closed orbit in the circle diagram

Tracing a closed orbit for one turn
In the circle diagram with a single kick.
The path is ABCD.
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Uncorrelated errors

¢ A random distribution of dipole errors

¢ Take the r.m.s. average of 9Y; = A(Bl)/(Bp)
# Weighted according to the Sk values
¢ The expectation value of the amplitude IS:

ﬂ(s
- Sy
¢ Kicks from the N magnets in the ring.

2~/2 sin 7Q Bp

¢ The factor ~v2 takes into account the
averaging over both sine and cosine phases

¢ A further factor 2 safety is applied to include
98% of all sample distributions.
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Sources of distortion

Table 1
Sources of Closed Orbit Distortion
Type of Source of r.m.s. value (ABI/(Bp)), . | Pplane
element Kick
Gradient Displacement <Ay> Kilj<dy> X,Z
magnet
Bending Tilt <> G <A> Z
magnet
(bending angle
= A)
Bending Field error <4B/B> A <AB/B> X
magnet
Straight Stray field ABs> | di{AB)/(Bp), | %2
sections
(length = dj)
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FNAL MEASUREMENT
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¢ Historic measurement from FNAL main ring
¢ Each bar is the position at a quadrupole

¢ +/- 100 iIs width of vacuum chamber

¢ Note mixture of 19th and 20th harmonic

¢ The Q value was 19.25
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Diad bump

¢ Simplest bump is from two equal dipoles 180
degrees apart in betatron phase. Each gives:
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Overlapping beam bumps

¢ Each colour shows a triad bump centred on a
beam position measurement.

¢ A computer calculates the superposition of
the currents in the dipoles and corrects the
whole orbit simultaneously
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Gradient errors
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Q diagram
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Multipole field shapes
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Physics of Chromatic

¢ The Q is determined b
guadrupoles whose str

1 dB,

k =
(Bp) dx

¢ Differentiating:
¢ Remember from gradi
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Measurement of Chromaticity

|y
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¢ We can steer the beam to a different mean
radius and a different momntum by changing
the rf frequency and measure Q
Ap Ap
Af, = f,n— Ar = Dy, —
7 0 av 0

. A
¢ Since AQ=0Q ?p

,_ ¢ dQ
& Hence ~Q = faﬂd_f
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Correction of Chromaticity

¢ Parabolic field of a 6 pole is really a gradient
which rises linearly with x

¢ If x Is the product of momentum error and
dispersion A B'D A

~(Bp) p

¢ The effect of all this extra focusing cancels

AQ:[ 1 IB"(S),B(S)D(S)ds}dp |

A (Bp) p

¢ Because gradient is opposite in v plane we
must have two sets of opposite polarity at F
and D quads where betas are different
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Lecture 7 - Beams and Errors - Summary

¢ Acceptance

¢ Making an orbit bump grow

¢ Circle diagram

¢ Closed orbit in the circle diagram
¢ Uncorrelated errors

¢ Sources of distortion

¢ FNAL measurement

¢ Diad bump

¢ Overlapping beam bumps

¢ Effect of quadrupole errors.

¢ Chromaticity

¢ Closed orbit in the circle diagram
¢ Gradient errors

¢ Working daigram
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