

LIGHT SOURCE BASICS

Eugene Tan Accelerator Physics and Operations

Outline

- Storage Ring based Light Sources
- Elements of a Storage Ring
- Relationship between Synchrotron Radiation and the electron beam

What is a Light Source?

- Particle accelerator dedicated to the generation of Synchrotron Radiation.
- Applications of particle accelerators:
 - Medical: Isotope production, PET, Proton/Carbon/Ion therapy.
 - Industrial: ion implantation, lithography
 - Research: high energy physics, particle based material analysis, neutron beam generation, synchrotron light generation
- Two types:
 - Storage Ring based light sources
 - Linac Based light sources (FELs)

Storage Ring Light Sources

We are one of 48 storage ring based light sources around the world.
 Only the second in the southern hemisphere.

http://www.lightsources.org/news/2014/09/05/synchrotron-radiation-research-facility-africa

New Light Sources: Sesame (Jordan)

New Light Sources: Solaris(Poland)

rys. Tomasz Zawierucha, Solaris Team

http://www.synchrotron.uj.edu.pl/en_GB/synchrotron

AN CANA

New Light Sources: Max IV (Sweden)

Storage Ring Light Source - Australian Synchrotron

Elements of the Australian Synchrotron

- 1. Electron Gun
- 2. Linear Accelerator (Linac)
- 3. Booster Synchrotron
- 4. Storage Ring
- 5. Photon Transport Line
- 6. Photon Experiments

Lorentz Force Equation

Lorentz Force Equation

12

1st AOF Syn 29/0-, 2017

$$E_z = E_0 \cos\left(k_z z - \omega t\right)$$

Disk loaded waveguide to manipulate RF fields to have the same phase velocity as the particles being accelerated.

 $\frac{u}{k_{z}}$

Travelling Wave

$$\Delta E = qV(\psi) - U(E)$$

$$\psi_s = \sin^{-1}(U/qV_0) \qquad \phi = \psi - \psi_s$$

$$\ddot{\phi} + \frac{\beta c k \eta_c q}{E_0 T_0} \frac{\mathrm{d} V}{\mathrm{d} \psi} \Big|_{\psi_s} \phi + \frac{1}{T_0} \frac{\mathrm{d} U}{\mathrm{d} E} \Big|_{E_0} \dot{\phi} = 0$$

Phase focusing ensures the electron beam arrives that the same phase at the RF cavities.

$$B\rho = \frac{p}{q}$$

Phase focusing

- \rightarrow constant circumference
- \rightarrow constant ρ

Increase **B** to increase **p**

- 1. Electron Gun (90 keV)
- 2. Linac (100 MeV)
- 3. Booster Synchrotron (3 GeV)
- 4. Storage Ring (3 GeV)
- 5. Photon Transport Line
- 6. Photon Experiments

• Store electrons at 3 GeV.

- Dipole
- Quadrupole (Magnetic lens)
- Focusing quadrupole (QF)
 - Focuses horizontally
 - Defocuses vertically
- Defocusing quadrupole(QD)
 - Defocuses horizontally
 - Focuses vertically
- Sextupole
 - QF for positive x
 - QD for negative x

$\mathsf{Gun} \rightarrow \mathsf{Linac} \rightarrow \mathsf{Booster} \rightarrow \mathsf{Storage} \mathsf{Ring}$

- Particles with different energies will disperse horizontally when passing a dipole magnet.
- Error: dispersion

- Quadrupoles for refocus the particles
- Particles with different energies do not focus the same way
- Error: chromatic

- Sextupoles to correct for chromatic errors
- Error: geometric, ...

27

$x'' + \left[\frac{1}{\rho(s)^2} - \frac{1}{B\rho}\frac{dB_y(s)}{dx}\right]x = 0$ \downarrow Periodic solution $x(s) = \sqrt{\beta(s)\epsilon}\cos\left(\theta(s) + \theta_0\right)$ $\theta(s) = \int_0^s \frac{ds'}{\beta(s')}$

Hill's Equation

Also defined an arbitrary amplitude constant ε which is called emittance.

Figure 1.2: Curvilinear coordinate system with axes *x* (radially outwards), *y* (vertically up) and *s* that is collinear with the ideal electron path. ρ is the bending radius of the electron traversing the magnetic field of a dipole magnet.

- As the magnets are discrete lumps, continuous analytical solutions are not possible.
- Matrix or numerical methods have been developed to determine the solutions.

$$\sigma_x(s) = \sqrt{\beta_x(s)\epsilon_x + \eta_x(s)^2\delta^2}$$

$$\sigma'_x(s) = \sqrt{\gamma_x(s)\epsilon_x + \eta'_x(s)^2\delta^2}$$

$$\gamma_x(s) = (1 + \alpha_x(s)^2)/\beta_x(s) \qquad \text{solution}$$

$$\alpha_x(s) = -\beta'_x(s)/2$$

$$\epsilon_x = \text{Equilibrium Emittance}$$

Beamsize and divergence

Australian Synchrotron

Single Particle Radiation Spectrum

Single Particle Radiation Spectrum

Comparison between bend magnet radiation, Wiggler, Super Conducting Wiggler (4.2T) and undulators.

From SPECTRA

Single Particle Radiation Spectrum

The critical energy depends on the energy of the electron beam.

The emission of the photons is a stochastic process

Equilibrium emittance is the balance between:

- Photon emission results a spread of momentum in 3 dimensions (quantum excitation).
- Damping effect from preferential loss in transverse momentum

Photon beam is a convolution of the power and beam distributions.

 $\varepsilon_x = 10.00 \text{ nmrad}$

- $\varepsilon_y = 0.10 \text{ nmrad} (1\% \text{ coupling})$
- $\varepsilon_y = 0.001 \text{ nmrad} (\text{min coupling})$

Why do we want smaller beam emittances?

Large beam emittance Reduced brilliance

Small beam emittance Increased brilliance

 $ext{brilliance} = rac{ ext{photons}}{ ext{second} \cdot ext{mrad}^2 \cdot ext{mm}^2 \cdot 0.1\% ext{ BW}}$

r **Ginsto**

Australian Synchrotron

- Some insight into how what a is involved in building a light source
- The relationship between the electron beam and the synchrotron light that you use.

THANK YOU

